Implementasi metode Simple Additive Weighting (SAW) dalam merekomendasikan lokasi pelaksanaan KKN

Yunus, Muhamad (2018) Implementasi metode Simple Additive Weighting (SAW) dalam merekomendasikan lokasi pelaksanaan KKN. Diploma thesis, UIN Sunan Gunung Djati Bandung.

[img]
Preview
Text (COVER)
1_cover.pdf

Download (109kB) | Preview
[img]
Preview
Text (ABSTRAK)
2_abstrak.pdf

Download (139kB) | Preview
[img]
Preview
Text (DAFTAR ISI)
3_daftarisi.pdf

Download (75kB) | Preview
[img]
Preview
Text (BAB I)
4_bab1.pdf

Download (238kB) | Preview
[img] Text (BAB II)
5_bab2.pdf
Restricted to Registered users only

Download (204kB) | Request a copy
[img] Text (BAB III)
6_bab3.pdf
Restricted to Registered users only

Download (919kB) | Request a copy
[img] Text (BAB IV)
7_bab4.pdf
Restricted to Registered users only

Download (492kB) | Request a copy
[img] Text (BAB V)
8_bab5.pdf
Restricted to Registered users only

Download (49kB) | Request a copy
[img] Text (DAFTAR PUSTAKA)
9_daftarpustaka.pdf
Restricted to Registered users only

Download (158kB) | Request a copy

Abstract

Penulisan karya tulis ini bertujuan untuk mengembangkan bagaimana merekomendasikan pemilihan desa lokasi Kuliah Kerja Nyata (KKN) yang sesuai menurut kriteria yang telah ditentukan. Penelitian ini bertujuan untuk memudahkan LP2M dalam proses pemilihan lokasi KKN yang sesuai dengan kriteria. Penelitian ini termasuk jenis penelitian pengembangan dengan mengacu pada pendapat dan kebutuhan LP2M. Permasalahan yang muncul di dalam menentukan lokasi KKN adalah semakin banyak alternatif semakin rumit pemilihan lokasi yang dilakukan secara manual yaitu dengan cara mengacak dan berdasarkan perkiraan terhadap desa tersebut. Produk yang dikembangkan berdasarkan penelitian awal adalah pemilihan desa sesuai kriteria dengan pemodelan sistem yang digabungkan dengan menggunakan metode Simple Additive Weighting (SAW) dengan memanfaatkan bobot nilai dari setiap masing-masing kriteria. Data yang di ambil sampel adalah sebanyak 10 data sebagai data uji coba. Hasil penelitian menunjukan bahwa metode SAW mampu menghasilkan penilaian pada sejumlah alternatif-alternatif yang kemudian dirankingkan berdasarkan nilai tertinggi, desa yang mempunyai urutan nilai tetinggi adalah yang direkomendasikan layak untuk lokasi KKN dengan batasan kelayakan yaitu ≥ 70 dengan tingkat keakurasian metode tersebut adalah 100% dari 30 data yang diuji. ABSTRACT This research aims to develop how to recommend the village location selection of Kuliah Kerja Nyata (KKN) in agreement with our criteria. This research aims also to make it easier of LP2M in the process to selection location of KKN in agreement with our criteria. This research is a kind of develop research by referring to income and the need of LP2M. The problem that arises in determining location of KKN, is that the more available the alternatives, The more complicated location selection that is done manually, namely based on randomizing and village supposition. The product which is developed based on the initial research is the village selection in accordance with a system modeled that is combined used the method Simple Additive Weighting (SAW) by using the weight of each individual criteria. The data taken sample is many as 10 data as test of data. The result showed that the method of SAW was able to produce assessment on a number of alternatives that were then presented by the highest scores, the village that had the highest order of value was recommended for location of KKN with a restriction of eligibility is ≥70 with accuracy level of the method is 100% of 30 data samples tested.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Decision Support System; Simple Additive Weighting; KKN
Subjects: Data Processing, Computer Science
Education > Research and Statistical Methods
Analysis, Theory of Functions > Other Analytic Methods
Numerical Analysis > Algorithms
Divisions: Fakultas Sains dan Teknologi > Program Studi Teknik Informatika
Depositing User: Muhamad Yunus Yunus
Date Deposited: 19 Oct 2018 08:10
Last Modified: 19 Oct 2018 08:10
URI: http://digilib.uinsgd.ac.id/id/eprint/15886

Actions (login required)

View Item View Item