DAFTAR ISI

ABSTRAK .. i
KATA PENGANTAR .. ii
DAFTAR ISI .. iv
DAFTAR TABEL ... vii
DAFTAR GAMBAR .. ix

BAB I PENDAHULUAN ... 1
 1.1. Latar Belakang .. 1
 1.2. Rumusan Masalah .. 2
 1.3. Tujuan .. 2
 1.4. Batasan Masalah .. 3
 1.5. Posisi Penelitian (State Of The Art) ... 4
 1.6. Sistematika Penulisan ... 5

BAB II TINJAUAN PUSTAKA ... 7
 2.1. Hasil Penelitian Sebelumnya yang Terkait dengan Deteksi Infus 7
 2.2. Teknologi Nirkabel .. 8
 2.3. Perangkat dan komponen utama pemancar pemantau kondisi cairan infus
 .. 8
 2.3.1. Infus .. 8
 2.3.2. Tranceiver NRF905 .. 13
 2.3.3. Op-Amp .. 13
 2.3.4. Sensor Infra Red ... 14
 2.3.5. Mikrokontroler .. 16
 2.3.5.1. Fitur AVR ATMega 328 ... 18
 2.3.5.2. Konfigurasi PIN ATMega 328 ... 20
 2.3.6. NE555N .. 22
 2.3.6.1. Konfigurasi PIN NE555N ... 24
BAB III METODOLOGI PENELITIAN ..26
3.1. Pendahuluan ...26
3.2. Studi Litelatur ...26
3.3. Rumusan Masalah ..27
3.4. Analisa Kebutuhan ...27
3.5. Analisa Perancangan ...28
3.6. Pengujuan ...30
3.7. Analisis ..30
3.8. Implementasi ..31

BAB IV PERANCANGAN DAN IMPLEMENTASI32
4.1. Perancangan ..32
4.1.1. Perancangan Hardware Penguat Sensor Infrared32
4.1.2. Perancangan Hardware Microcontroller Atmega32834
4.1.3. Perancangan Pemancar NRF905 433MHz36
4.1.4. Perancangan Pemograman yang Akan Digunakan38
4.2. Implementasi ..39
4.2.1. Perakitan Hardware Penguat Sensor Infrared39
4.2.2. Perakitan Hardware Microcontroller Atmega32841
4.2.3. Proses Penulisan Code Program ke Microcontroller Atmega32842
4.2.4. Proses upload Code Program ke Microcontroller Atmega32847
4.3. Perakitan Transceiver ..51

BAB V PENGUJIAN DAN ANALISA ...53
5.1. Pengujuan Rangkaian Atmega328 ...53
5.2. Pengujuan Sensor Infrared ...55
5.3. Pengujuan Sensor Infrared Dengan Menggunakan Rangkaian Penguat..56
5.4. Pengujuan Rangkaian Transceiver ..59
5.4.1. Pengujuan Prototipe Pada Ruang Tertutup60
5.4.2. Pengujuan Dengan Memberikan Gangguan Pada Sensor Tetesan
Infus ..93
5.4.3. Pengujuan Ketahanan Perangkat ..93
BAB VI PENUTUP ...96
6.1. Kesimpulan ...96
6.2. Saran .. 96
DAFTAR PUSTAKA ..98
DAFTAR TABEL

Table 2.1 Konfigurasi Port B .. 20
Table 2.2 Konfigurasi Port C .. 21
Table 2.3 Konfigurasi Port D .. 21
Table 4.1 Daftar komponen yang digunakan pada rangkaian sensor infrared... 33
Table 4.2 Daftar komponen yang digunakan pada rangkaian Microcontroller Atmega 328 ... 35
Table 4.3 Konfigurasi pin NRF905 ke pin Atmega328 37
Table 5.1 Hasil pengujian pemantau tetesan infuse pada ruangan server di ruangan dengan pengujian sample 20 TPM dengan informasi alamat infuse A dan infuse B.. 62
Table 5.2 Hasil pengujian pemantau tetesan infuse pada ruangan server di ruangan dengan pengujian sample 30 TPM dengan informasi alamat infuse A dan infuse B.. 63
Table 5.3 Hasil pengujian pemantau tetesan infuse pada ruangan server di ruangan dengan pengujian sample 60 TPM dengan informasi alamat infuse A dan infuse B.. 64
Table 5.4 Hasil pengujian pemantau tetesan infuse pada ruangan server di ruangan dengan pengujian sample 120 TPM dengan informasi alamat infuse A dan infuse B.. 65
Table 5.5 Hasil pengujian pada titik 6 dengan pengujian sample 20 TPM dengan informasi alamat infuse A dan infuse B........................... 67
Table 5.6 Hasil pengujian pada titik 6 dengan pengujian sample 30 TPM dengan informasi alamat infuse A dan infuse B........................... 68
Table 5.7 Hasil pengujian pada titik 6 dengan pengujian sample 60 TPM dengan informasi alamat infuse A dan infuse B........................... 70
Table 5.8 Hasil pengujian pada titik 6 dengan pengujian sample 120 TPM dengan informasi alamat infuse A dan infuse B........................... 71
Table 5.9 Hasil pengujian pada titik 7 dengan pengujian sample 20 TPM
dengan informasi alamat infuse A dan infuse B

Table 5.10 Hasil pengujian pada titik 7 dengan pengujian sample 30 TPM
dengan informasi alamat infuse A dan infuse B

Table 5.11 Hasil pengujian pada titik 7 dengan pengujian sample 60 TPM
dengan informasi alamat infuse A dan infuse B

Table 5.12 Hasil pengujian pada titik 7 dengan pengujian sample 120 TPM
dengan informasi alamat infuse A dan infuse B

Table 5.13 Hasil pengujian pada titik 8 dengan pengujian sample 20 TPM
dengan informasi alamat infuse A dan infuse B

Table 5.14 Hasil pengujian pada titik 8 dengan pengujian sample 30 TPM
dengan informasi alamat infuse A dan infuse B

Table 5.15 Hasil pengujian pada titik 8 dengan pengujian sample 60 TPM
dengan informasi alamat infuse A dan infuse B

Table 5.16 Hasil pengujian pada titik 8 dengan pengujian sample 120 TPM
dengan informasi alamat infuse A dan infuse B

Table 5.17 Hasil pengujian pada titik 9 dengan pengujian sample 20 TPM
dengan informasi alamat infuse A dan infuse B

Table 5.18 Hasil pengujian pada titik 9 dengan pengujian sample 30 TPM
dengan informasi alamat infuse A dan infuse B

Table 5.19 Hasil pengujian pada titik 9 dengan pengujian sample 60 TPM
dengan informasi alamat infuse A dan infuse B

Table 5.20 Hasil pengujian pada titik 9 dengan pengujian sample 120 TPM
dengan informasi alamat infuse A dan infuse B
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Posisi Penelitian</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Cairan Infus</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Cairan Infus</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Modul NRF 905</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Simbol skematik op-am</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Bentuk dan konfigurasi pin IR Detector</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Diagram antarmuka pada mikrokontroler</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Arsitektur ATmega 328</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Konfigurasi Pin ATMega328</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>IC NE555N</td>
<td>22</td>
</tr>
<tr>
<td>2.11</td>
<td>Blok Diagram Internal Pembangkit Pulsa IC 555</td>
<td>22</td>
</tr>
<tr>
<td>2.12</td>
<td>Connection Diagram NE555N</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Bagan tahapan penelitian</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Bagan Tahapan Perancangan</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Skema sensor Infrared cairan tetesan infus</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Diagaram Blok Pemancar Kondisi Cairan Infus</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Diagram Pencangan Transceiver</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Skematik Rangkaian Penguat Sensor infrared</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>Desain Rangkaian Sensor infrared siap cetak</td>
<td>33</td>
</tr>
<tr>
<td>4.4</td>
<td>Desain Rangkaian Microcontroller Atmega328</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>Rangkaian Microcontroller Atmega328 Siap Cetak</td>
<td>35</td>
</tr>
<tr>
<td>4.6</td>
<td>Skema Rangkaian NRF905</td>
<td>37</td>
</tr>
<tr>
<td>4.7</td>
<td>Dudukan NRF905 ke Renagkaian Atmega328, Rangkaian dudukan NRF905 siap cetak</td>
<td>37</td>
</tr>
<tr>
<td>4.8</td>
<td>Perancangan pemograman</td>
<td>38</td>
</tr>
<tr>
<td>4.9</td>
<td>Rangkaian Penguat Sensor Infrared yang telah di cetak</td>
<td>39</td>
</tr>
<tr>
<td>4.10</td>
<td>rangkaian Penguat sensor infrared</td>
<td>40</td>
</tr>
<tr>
<td>4.11</td>
<td>PCB sebelum dipasang sensor infrared, PCB setelah</td>
<td></td>
</tr>
</tbody>
</table>
Dipasang sensor infrared................................. 40
Gambar 4.12 Rangkaian Sensor Infrared Berserta Penguat Sensor

Infrared.. 41
Gambar 4.13 Rangkaian Atmega328 yang telah di cetak 41
Gambar 4.14 Rangkaian Atmega328 42
Gambar 4.15 Open new Project IDE Arduino......................... 43
Gambar 4.16 Folder nRF905 di libraries IDE Arduino 44
Gambar 4.17 Panggilan ke libraries dan pemberian alamat pada
program.. 44
Gambar 4.18 Coding perintah untuk menghasilkan data ADC tetesan
Infuse dan pengiriman data ADC ke receiver 46
Gambar 4.19 Proses kompilasi di IDE Arduino.......................... 46
Gambar 4.20 program yang akan di upload.......................... 47
Gambar 4.21 Proses Upload Dengan menggunakan Arduino Uno 48
Gambar 4.22 Proses upload telah selesai............................. 49
Gambar 4.23 Modul NRF905 Berserta Dudukannya.................. 49
Gambar 4.24 Pemasangan modul NRF905 ke rangkaian
Atmega328 .. 50
Gambar 4.25 pemasangan modul NRF905 ke rangkaian Atmega328. 50
Gambar 4.26 rangkaian transceiver.. 51
Gambar 5.1 Komunikasi otomatis antara pengirim dan penerima...... 51
Gambar 5.2 Hasil data ADC aat di lewati objek....................... 51
Gambar 5.3 Data ADC Dengan Media Tetesan Air 51
Gambar 5.4 pengujian sensor infrared dengan penguat sensor
infrared... 51
Gambar 5.5 ADC hasil dari tetesan infuse.............................. 51
Gambar 5.6 Transceiver Dengan Alamat A, Transceiver
Dengan Alamat B .. 51
Gambar 5.7 Denah pengujian sistem nirkabel 61