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Urban centers worldwide continue to face challenges in traffic management 
due to outdated traffic signal infrastructure. This study aims to develop an 
intelligent traffic management system by implementing the Mask R-CNN 
algorithm for real-time vehicle detection and traffic flow optimization. Utilizing 
the CRISP-DM framework, this research processes CCTV footage from the 
Pasteur-Pasopati intersection in Bandung to identify and quantify vehicles 
dynamically. The proposed system leverages an enhanced Mask R-CNN 
model with a ResNet-50 FPN backbone to improve detection accuracy. 
Experimental results demonstrate an 80% vehicle detection accuracy, with a 
macro-average precision of 0.89, recall of 0.83, and an F1-score of 0.82. These 
findings highlight the system’s capability to replace conventional fixed-time 
traffic signals with a more adaptive approach, adjusting green light durations 
based on real-time traffic density. The proposed solution has significant 
practical implications for reducing congestion and improving traffic flow 
efficiency in urban environments. 
 

  
 1. Introduction 

 
Urban traffic gridlock represents a widespread challenge confronting metropolitan areas globally. The 

multifaceted burden of vehicular congestion extends across temporal, financial, and psychological domains, significantly 
impacting daily commuters. According to 2021 INRIX research[1], revealed that London topped the global congestion 
rankings with drivers losing 148 hours annually, while Paris followed closely behind at 140 hours. In the Indonesian 
context, Surabaya experienced the highest congestion levels with 62 hours lost, surpassing Jakarta's 28-hour delay. 
The economic impact is particularly evident in New York's 2020[2] data, where each driver suffered financial losses 
averaging $1,486, contributing to a citywide economic burden of $7.7 billion from 100 hours lost per driver. Beyond 
these tangible costs, traffic congestion takes a psychological toll, manifesting in elevated stress levels and increased 
instances of aggressive driver behavior. 

With rapid population growth and urbanization, the number of vehicles on the roads has increased significantly. 
This leads to decreased transportation efficiency, longer travel times, and higher emissions of pollutants. Congestion 
not only disrupts the daily activities of city residents but also negatively impacts the economy and environment. In 
Indonesia, data from the Central Bureau of Statistics (BPS) shows that the number of motor vehicles has continued to 
rise year after year. In 2021, there were approximately 143 million motor vehicles in Indonesia, and this number 
increased to around 148 million in 2022[3]. The rising number of vehicles has a direct and significant impact on traffic 
congestion, especially in many large cities[4]. 

A significant contributing factor to urban traffic gridlock stems from inadequate traffic signal control mechanisms 
at road intersections[5]. Multiple research studies and comprehensive reports indicate that numerous traffic light 
installations continue to operate on predetermined timing schedules that fail to respond to dynamic traffic flow 
patterns[6][7]. As a result, situations arise where vehicles must stop at a red light even though the other direction is 
empty, or green lights remain active for too short a time to accommodate high vehicle volumes. These non-adaptive 
systems exacerbate congestion and increase driver frustration[8]. Traffic signal systems employ either fixed-time 
scheduling or manual regulation, neither of which accounts for real-time traffic patterns, frequently resulting in avoidable 
congestion. Fixed-time approaches implement predetermined green and red light durations, while manual systems 
depend on traffic personnel who cannot efficiently respond to fluctuating vehicle numbers. To address these limitations, 
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this research introduces an innovative Mask R-CNN-based solution that leverages existing CCTV infrastructure to 
continuously assess traffic conditions, facilitating intelligent signal timing modifications based on actual vehicular 
movement data. Through real-time analysis of vehicle concentration and traffic flow dynamics, this proposed system 
enhances green signal duration optimization, minimizes unnecessary waiting periods at crossroads, and substantially 
improves metropolitan traffic management efficiency[9]. 

To address this problem, an intelligent traffic management system is needed to adjust traffic light settings based 
on real-world conditions. Such a system must be capable of detecting and analyzing traffic volumes in real-time, 
enabling traffic lights to operate more efficiently and reduce congestion[10]. This technology requires the application of 
advanced algorithms and sensors that can accurately monitor traffic conditions. The innovation of smart traffic lights is 
divided into three main focuses: reducing congestion, prioritizing emergency vehicles, and accommodating pedestrians. 
This system is designed to determine the green light duration for each road lane to help reduce traffic density. To 
achieve this, the system needs to calculate vehicle volume and density, then learn from vehicle volume data to optimize 
the traffic light duration[11]. One of the technologies that support intelligent traffic management systems is object 
detection algorithms, such as Mask Regions-Convolutional Neural Network (MR-CNN). MR-CNN is a sophisticated and 
accurate algorithm for detecting, identifying, and segmenting objects in images or videos, making it highly suitable for 
real-time applications like traffic control[12][13]. 

The Mask R-CNN model represents an advanced iteration of R-CNN (Region-based Convolutional Neural 
Networks), enhancing the original architecture by incorporating object instance segmentation functionality to its 
detection capabilities[10]. This algorithm divides the detection task into three main steps: first, generating a large number 
of region proposals or candidate areas that may contain objects[14]. Second, classifying each candidate area using 
CNN (Convolutional Neural Network), and third, generating more precise segmentation maps for each detected 
object[15][16]. With this approach, Mask R-CNN can detect and classify objects with high accuracy and detailed 
segmentation. This study was carried out at the Pasteur-Pasopati intersection in Bandung, where the Mask R-CNN 
model was applied to real-world traffic scenarios. The research aims to assess the model's effectiveness in optimizing 
traffic light configurations based on vehicle volume and density data, ultimately enhancing urban traffic flow. The main 
contribution of this research is to develop a Mask R-CNN-based traffic management system capable of detecting and 
counting vehicles in real-time, using the CRISP-DM approach to ensure a systematic research process, and providing 
model performance analysis under various different traffic conditions. 
 Several related studies include research by Zhang Gongguo and Wei Junhao in 2021, which utilized an 
Improved YOLO V3 algorithm for small target detection in traffic flows. This algorithm successfully improved the 
accuracy of small target detection by 3%, the recall rate of small target detection by 5.2%, and the average accuracy of 
multi-category detection by 6.64%[17]. Another study by Gokalp Cinarer in 2024 used the YOLOv5 model to achieve 
high accuracy in traffic sign detection. In this study, three YOLOv5 models (s, m, l) were compared, and the YOLOv5m 
model demonstrated the highest training quality with an mAP metric of 98.1% after 200 epochs. The YOLOv5l model 
also achieved the highest precision rate of 99.3%[18]. Similarly, research by Hoang Tran Ngoc, Khang Hoang Nguyen, 
Huy Khanh Hua, Huynh Vu Nhu Nguyen, and Luyl-Da Quach in 2023 used the YOLOv8 model for traffic light detection, 
yielding the best results with a Mean Average Precision (mAP) of 98.5%[19]. Another study in the same year, conducted 
by Huaqing Lai, Liangyan Chen, Weihua Liu, Zi Yan, and Sheng Ye, focused on object detection using YOLOv5s with 
modifications such as MPANet, C4STB, NWD, and K-means++, which significantly improved small object detection, 
increasing the mean average precision (mAP) from 79.6% to 86.4%. Additionally, these modifications enhanced 
accuracy in detecting small objects and improved model performance in challenging conditions such as snow, fog, 
noise, motion blur, and partial occlusion.[20].  

Another study that related to smart traffic light system was conducted by Mochammad Sahal, Zulkifli Hidayat, 
Yusuf Bilfaqih, Mohamad Abdul Hady, and Yosua Marthin Hawila Tampubolon in 2023 using YOLO. This research 
successfully developed a smart traffic light system capable of adapting to traffic conditions based on the number of 
vehicles. The results showed that the average vehicle queue length was reduced from 110 vehicles to 106 vehicles 
during the 06:00 to 09:00 time frame[21]. In addition, the research was developed by Andrea Vidali, Luca Crociani, 
Giuseppe Vizzari, and Stefania Bandini titled A Deep Reinforcement Learning Approach to Adaptive Traffic Lights 
Management demonstrates that the Reinforcement Learning (RL) approach for traffic light adaptation and management 
has great potential to improve global traffic flow efficiency[22]. 

Several previous studies have used YOLO and Faster R-CNN methods to detect vehicles in smart traffic 
systems. However, this study found that these methods have limitations in segmenting more complex objects. By using 
Mask R-CNN equipped with ResNet-50 FPN, this study fills the horizon by improving the detection accuracy and 
segmenting more detailed vehicles. 

 
 
2. Research Method 



This study implements the CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology, a well-
established structure for guiding data mining operations and model creation across diverse analytical scenarios. The 
framework encompasses six interconnected and cyclical phases[6][7][23], offering flexibility to adapt to specific project 
requirements and circumstances. 

 

Figure 1. CRISP-DM Methodology[6] 
 

2.1. Business Understanding 
In this research, the business understanding phase encompasses a comprehensive analysis[24]. The core 

objective centers on creating a smart traffic management system that employs the Mask R-CNN algorithm for automated 
vehicle detection, specifically utilizing TorchVision's pre-trained maskrcnn_resnet50_fpn model. This initial stage 
incorporates the following components: 
a. Vehicle Analysis: Analyze vehicles through CCTV footage recorded at the Pasteur-Pasopati intersection in Bandung 

in the morning on a Friday. 
b. Inference Using Pre-Trained Model: Perform inference using the pre-trained maskrcnn_resnet50_fpn model for 

vehicle detection, which includes feature extraction and object classification without requiring model retraining[25]. 

c. Output Generation: Produce a new video recording containing vehicle predictions and counts as part of the output. 
 
2.2. Data Understanding 

This stage describes the data utilized in the intelligent traffic control system. It involves data collection, 
processing, and labeling. Activities: 
a. Data Collection and Identification: Collect and identify data in the form of CCTV footage recorded at the Pasteur-

Pasopati intersection in Bandung in the morning on a Friday. 
b. Data Processing: Analyze the video characteristics, such as color intensity, duration, and image quality, ensuring 

that the video contains sufficient detail for vehicle detection and counting processes. 
c. Data Labeling: Label the video based on the types of objects it contains, such as vehicles (cars, motorcycles, trucks, 

bicycles, and buses). 
Table 1 presents the index and labels used during the object detection testing process. Out of the nine available 

traffic-related labels, the testing will focus on five vehicle categories Bicycle (Index 2), Car (Index 3), Motorcycle (Index 
4), Bus (Index 6) and Truck (Index 8). 

Table 1. Model Label 

Index Label 

3 car 
4 motorcycle 
6 bus 
8 truck 
2 bicycle 
7 train 
9 Traffic light 
12 stop sign 
13 parking meter 

 



 

2.3. Data Preparation 
The data processed originates from CCTV footage of the intersection, and the video processing stages are as 

follows: 
a. Video Acquisition: The video is recorded from CCTV footage at the Pasteur-Pasopati intersection in Bandung in the 

morning on a Friday. 
b. Frame Extraction: The video is divided into individual frames. 
c. Frame Processing: Each frame is processed using the pre-trained maskrcnn_resnet50_fpn model to detect and 

count objects. 
d. Object Labeling: Detected objects are labeled according to their categories (car, motorcycle, truck, bus, bicycle) 

using the COCO (Common Objects in Context) annotation format. 
e. Data Storage: The labeled and counted data is stored for use in simulating traffic light conditions. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Video per frame 
 

Figure 2 provides a visual representation of the sequential steps involved in processing video data obtained 
from CCTV footage. This process includes capturing raw footage, preprocessing the video to enhance quality, applying 
object detection algorithms, analyzing traffic patterns, and extracting relevant data for further decision-making in 
intelligent traffic management systems. 

 

Figure 3. Frame average color analysis process 
 

The RGB intensity distribution analysis, depicted in Figure 3, provides a histogram visualization examining the 
pixel characteristics within the video frame samples. Each color component—Red (R), Green (G), and Blue (B)—
displays intensity values spanning from 0 to 250. The histograms reveal comparable distribution trends across all 
channels, characterized by pixel concentrations predominantly in the lower intensity ranges (displaying left-skewed 
distributions). Peak frequency measurements differ among the channels, with the Red channel reaching roughly 14,000 
pixels, the Blue channel showing approximately 12,000 pixels, and the Green channel registering around 10,000 pixels 
at their respective maxima. 

This analysis of RGB intensity distribution plays a critical role in understanding the visual characteristics of video 
frames, particularly regarding variations in lighting and color dominance. These factors can significantly influence 
subsequent image processing tasks, such as object detection and classification[26]. 

 
 



 
2.4. Modelling 

As the number of vehicles in urban areas increases, intelligent traffic management systems are becoming 
increasingly important to optimize traffic flow and reduce congestion. Computer vision-based technologies, such as 
Mask R-CNN, offer a more adaptive solution compared to conventional systems that rely on fixed time or manual 
settings. With its pixel-level segmentation and accurate object detection capabilities, Mask R-CNN can improve the 
efficiency of traffic light settings based on real-time traffic conditions. However, to ensure that this model performs 
optimally in various real-world situations, data preprocessing and augmentation are required to improve the model’s 
robustness to environmental variations and video quality. 

1. Pra-Pemrosesan 
In order for Mask R-CNN to accurately detect vehicles in a variety of conditions, several data preprocessing 
techniques are applied before the video is processed by the model: 
● Contrast and Brightness Normalization, Improves object visibility in extreme lighting conditions, such 

as bright sunlight, sharp shadows, or night scenes. 
● Perspective Correction, Reduces distortions caused by varying camera angles, ensuring vehicles 

remain proportional in a variety of positions. 
2. Augmentation 

To ensure the model performs well in a variety of real-world scenarios, several data augmentation 
techniques are applied that help improve the model’s robustness: 
● Control Noise, Adding visual noise to ensure the model can still recognize vehicles even when video 

quality is poor or sensor noise is present. 
● Rotation and Scalling, Simulating different camera angles and vehicle sizes to improve model 

generalization[27]. 
The approach to modeling relies on the Mask R-CNN algorithm to implement intelligent traffic management. 

This algorithm integrates a Convolutional Neural Network (CNN) layer for extracting image features, a Region Proposal 
Network (RPN) for identifying objects, and a Mask Head for segmenting objects within the images[28]. Since the model 
is pre-trained using PyTorch and optimized for a variety of object detection tasks, it can perform object detection directly 
on input data without requiring additional training. 

 
Figure 4. MR-CNN classification flow 

 
Figure 4 illustrates the MR-CNN classification flow, which consists of several key stages: input image, RoIAlign 

(Region of Interest Alignment), class box prediction, and output. The process begins with an input image, where relevant 
regions are extracted using RoIAlign to ensure precise spatial alignment. Next, the system classifies objects and 
generates bounding boxes in the class box prediction stage. Finally, the output consists of detected objects with their 
respective classifications and segmented masks, making MR-CNN highly effective for real-time traffic analysis and 
management[28]. 

 
2.5. Evaluation 

The model's performance is assessed using three key metrics: Precision, Recall, and F1-Score. Precision 
evaluates the accuracy of the model's predictions by comparing the relevant data retrieved with the total data identified 
by the model. Recall assesses the model's effectiveness in correctly identifying all relevant information. The F1-Score, 



 

serving as a comprehensive measure, is the harmonic mean of Precision and Recall, offering a balanced evaluation of 
the model's performance[16]. 

1. Validation and Variability of Train Loss 
To ensure the model can generalize well to various traffic conditions, k-fold cross validation (k=5) is applied. 
This approach divides the dataset into five parts, where four parts are used for training and one part for 
testing in each iteration. The validation results show quite large variations in train loss in each fold:
● Fold 1: 33.2418 
● Fold 2: 2.2435 
● Fold 3: 0.9201 

● Fold 4: 3.4749 
● Fold 5: 10.7194

 
This variation can be caused by uneven data distribution, where some subsets of data have higher 
complexity, such as many stacked vehicles or less than ideal lighting. Folds with low train loss (e.g. Fold 3: 
0.9201) may be overfitting, while high train loss (e.g. Fold 1: 33.2418) may indicate that the data in that fold 
is more complex, but does not necessarily result in low accuracy. Therefore, to understand the impact on 
model performance, it is necessary to compare it with the evaluation results on the test data. 

2. Evaluation Metrics 
Precision, Recall, and F1-Score are calculated using the following formulas: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (1) 

 
 

In this context, True Positive (TP) refers to the count of instances where the model accurately predicted a 
positive class, aligning correctly with the desired outcome. Conversely, False Positive (FP) indicates the 
count of instances where the model mistakenly identified a positive class, leading to an incorrect prediction 
for the intended outcome. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

 
In this case, True Positive (TP) refers to the count of instances where the model accurately identified a 
positive class, signifying correct predictions for the intended outcome. Meanwhile, False Negative (FN) 
denotes the count of instances where the model incorrectly classified positive instances as negative, 
resulting in missed or misclassified positive outcome. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 𝑥 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙
 (3) 

 
3. Results and Discussion 

The following are the results obtained and the discussion related to the labeling process, vehicle counting, 
simulation, and the analysis of the vehicle detection system using the Mask R-CNN model for intelligent traffic 
management. Based on a single test sample, the model achieved a perfect precision, recall, and F1-score of 1.00. For 
the car category, the model demonstrated a precision of 0.67, a recall of 1.00, and an F1-score of 0.80 from two test 
samples. Similarly, in the motorcycle category, the model attained a precision of 1.00, a recall of 0.50, and an F1-score 
of 0.67, also from two test samples. In total, the system achieved an overall vehicle detection and counting accuracy of 
80% across five test samples. Moreover, it recorded a macro-average precision of 0.89, a recall of 0.83, and an F1-
score of 0.82. 

 
 

3.1. Labelling Process 
The implementation of this system is developed using the Python programming language, leveraging the pre-

trained maskrcnn_resnet50_fpn model from the Torchvision library. Technically, the labeling process is carried out using 
the class_names list, which has been defined within the pre-trained Mask R-CNN model, with COCO annotation format 
according to the label index that has been established. The model detects five main categories of vehicles: bicycle, car, 
motorcycle, bus, and truck, which are commonly encountered in road traffic. These labels are used as references in the 
classification and real-time vehicle counting process. 
 



 
Figure 5. Labelling 

 
Figure 5 shows the result of the labeling implementation, where each detected vehicle object is assigned a 

bounding box and labeled according to its category based on the predetermined index. This labeling result demonstrates 
the model's ability to identify and classify various types of vehicles within the video frame being analyzed. 
 
3.2. Vehicle Counting 

The process of detecting and counting vehicles, where the input video is divided into a series of frames. These 
frames are then analyzed by the model to detect and count the number of vehicles identified in each frame. 

 

 
Figure 6. Vehicle counting by category 

 
as shown in Figure 6 below. The data shows that the vehicles counted correctly are 13 for cars and 1 for 

motorcycles. However, the model identified 15 cars and 1 truck, resulting in an accuracy of 92.86%. In the image, the 
blurred area is only for identification to represent unnecessary footage and is intentionally excluded to prevent it from 
being counted. In addition to accuracy, the computational efficiency of the model is an important factor in implementing 
real-time traffic management. Mask R-CNN has a complex architecture with pixel-level segmentation processes, which 
makes its inference time higher than lighter detection methods such as YOLO or MobileNet. In this test, the model 



 

showed an average inference time of 180 ms per frame on Cuda GPU, which is still applicable in adaptive traffic systems 
but may experience latency on devices with limited computing power. 
 
3.3. Traffic Analysis Simulation (TAS) 

The Traffic Analysis Simulation (TAS) is conducted to simulate the traffic monitoring process by displaying both 
the traffic light status and vehicle count results simultaneously in the video. This system integrates two main 
components: vehicle detection and traffic light status monitoring, which are displayed as an overlay on the video stream. 
The detected vehicle count and traffic light status are visualized in real-time, enabling live observation of the current 
traffic conditions. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Prediction with traffic light status 
 
In Figure 7a, the prediction result shows the "STOP" status. In this system, the "STOP" status is triggered if the 

number of vehicles detected in the video frame is fewer than 20. When this condition is met, the system enters the 
"STOP" status. Once the "STOP" status is active, the system will wait for 60 seconds before transitioning to the next 
status. 

After 60 seconds, as shown in Figure 7b, the system transitions to the "WARNING" status. This status occurs 
after the red light (STOP status) has been on for 60 seconds, signaling that the red light is about to switch to green. The 
"WARNING" status lasts for 5 seconds, giving drivers time to prepare for the upcoming light change. 

In Figure 7c, the prediction result displays the "GO" status. This status is triggered when the number of vehicles 
detected exceeds 20. The "GO" status remains active for 30 seconds, allowing enough time for vehicles to pass through 
the intersection before the light changes again. 

However, in real-world traffic scenarios, these settings need to be extended to handle more complex conditions, 
such as: 

1. Traffic Congestion, if the number of vehicles in several consecutive frames continues to increase without 
decreasing, the system will detect congestion and extend the green light duration to the maximum threshold 
to reduce the queue of vehicles. 

2. Pedestrian Crossings, if additional cameras or sensors detect a large number of pedestrians in the 
crosswalk area, the system can prioritize the red light for longer to allow pedestrians time to cross safely. 

3. Multi-lane Intersections, at intersections with multiple lanes, the system can use priority lane analysis, 
where the lane with the highest vehicle density is given a longer green duration than the lane with less 
traffic. 

 
 
 
3.4. Analysis of Multi-Class Vehicle Detection Results 

The model demonstrated varying levels of performance across different vehicle categories. The bus category 
achieved perfect performance, with precision, recall, and F1-score all equal to 1.00, based on a single test sample. For 
the car category, the model attained a precision of 0.67, recall of 1.00, and an F1-score of 0.80 from two test samples. 
Similarly, the motorcycle category achieved a precision of 1.00, recall of 0.50, and an F1-score of 0.67, also from two 
test samples. Overall, the model achieved an 80% accuracy in detecting and counting vehicles across five test samples. 
Additionally, it obtained a macro-average precision of 0.89, recall of 0.83, and F1-score of 0.82. The model shows 
varying performance across vehicle categories. 
1. Buses perform excellently (Precision, Recall, and F1-Score = 1.00) due to their large size and distinctive visual 

features, making them easier for the model to recognize. 
2. Cars show a precision of 0.67 and a recall of 1.00, meaning the model often correctly detects cars but also produces 

false positives, possibly due to misclassification with trucks or similar vehicles. 



3. Motorcycles have a precision of 1.00 but a recall of only 0.50, indicating that the model often fails to detect 
motorcycles that are actually in the frame. 

Table 2. Confusion matrix for class in frame 

 Car Truck Motorcycle 

Car 13 1 0 
Motorcycle 0 0 1 

Truck 0 0 0 

 
As shown in Table 2, the model achieved a detection result where the actual number of cars (13) and 

motorcycles (1) was compared against the predictions. The model correctly identified 13 cars but mistakenly detected 
1 truck instead of a car and failed to misclassify motorcycles as cars or trucks. Additionally, the motorcycle was correctly 
detected, resulting in a detailed performance evaluation reflected in the confusion matrix. 

To improve model performance and reduce detection errors (false positives and false negatives), several 
strategies can be applied, such as expanding and enriching the dataset by adding more data, especially for the 
motorcycle and truck categories, and increasing the variety of shooting angles and lighting conditions. The imbalance 
in the number of samples between vehicle categories in the dataset can be overcome by oversampling or synthetic 
data augmentation techniques so that the model has a better representation of each category. In addition, adjusting the 
detection threshold (threshold tuning) in Mask R-CNN can help reduce errors in over-detecting cars and increase 
sensitivity to previously under-detected motorcycles. Although Mask R-CNN has shown an accuracy of 80%, the 
difference in performance between vehicle categories is still a challenge, especially in detecting motorcycles which have 
lower recall. 
 
4. Conclusion 

This research successfully developed an intelligent traffic light control system using Mask R-CNN for real-time 
vehicle detection and counting, optimizing traffic flow based on vehicle density. The model, built upon 
maskrcnn_resnet50_fpn with a ResNet-50 backbone and Feature Pyramid Network (FPN), demonstrated high accuracy 
in detecting and categorizing vehicles. The Car category achieved 100% recall but lower precision (67%), resulting in 
an F1-score of 80%, while the Motorcycle category exhibited perfect precision (100%) but a lower recall (50%), leading 
to an F1-score of 67%. The system successfully adjusted traffic light durations dynamically, achieving an accuracy of 
92.86% in real-time frame identification. The scalability of this system holds significant potential for managing larger 
and more complex traffic scenarios, such as multi-lane intersections or city-wide traffic control. Compared to YOLO 
(You Only Look Once), Mask R-CNN offers complementary strengths in certain applications. YOLO is widely recognized 
for its high inference speed and efficiency, making it well-suited for real-time detection tasks with limited computational 
resources. However, in scenarios that require detailed object localization and segmentation, such as dense or wide-
area traffic scenes, Mask R-CNN provides additional advantages. Its ability to perform pixel-wise segmentation 
(masking) allows for more precise identification of vehicles, including those located at greater distances from the 
camera. This makes Mask R-CNN particularly effective for traffic monitoring systems where both detection accuracy 
and spatial detail are important. Rather than replacing YOLO, Mask R-CNN serves as a robust alternative for use cases 
that demand richer contextual information and finer spatial resolution. While the model can generalize across various 
traffic conditions, adaptation may be required for different cities due to variations in traffic behavior, infrastructure, and 
road regulations. Future improvements could explore automated adaptation techniques, allowing the system to learn 
and optimize itself dynamically based on localized traffic patterns without requiring manual adjustments. 

To further enhance model robustness, collecting diverse traffic video datasets is recommended, particularly for 
edge cases like heavy rain, nighttime, and foggy conditions. Model quantization or pruning techniques could also be 
implemented to reduce model size and accelerate inference without sacrificing accuracy. Future research should 
address technical challenges and potential solutions for real-world system deployment, including hardware 
considerations, edge deployment, and integration with existing traffic management infrastructure. Further research can 
focus on expanding object detection capabilities to include pedestrians, non-motorized vehicles, and public transport, 
providing a more comprehensive traffic analysis. Additionally, integrating reinforcement learning could enable adaptive 
traffic signal control, where the system continuously learns from real-time data to optimize light timing autonomously. 
Implementing edge computing solutions could also enhance real-time processing, reducing dependency on cloud 
infrastructure and minimizing computational latency. Overall, this research demonstrates the feasibility and 
effectiveness of AI-driven traffic management, offering a foundation for future advancements in smart city traffic control 
that is scalable, adaptive, and efficient in reducing congestion and improving urban mobility. 
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