Prediksi umur operasional transformator dengan algoritma Backpropagation Neural Network (BPNN) berdasarkan data suhu dan beban

Akmal, Muhammad Rusdiawan Triadi (2025) Prediksi umur operasional transformator dengan algoritma Backpropagation Neural Network (BPNN) berdasarkan data suhu dan beban. Sarjana thesis, UIN Sunan Gunung Djati Bandung.

[img]
Preview
Text
1_Cover.pdf

Download (41kB) | Preview
[img]
Preview
Text
2_Abstrak.pdf

Download (25kB) | Preview
[img]
Preview
Text
3_skbebasplagiarism.pdf

Download (192kB) | Preview
[img]
Preview
Text
4_Daftar Isi.pdf

Download (153kB) | Preview
[img]
Preview
Text
5_BAB I.pdf

Download (134kB) | Preview
[img] Text
6_BAB II.pdf
Restricted to Registered users only

Download (630kB) | Request a copy
[img] Text
7_BAB III.pdf
Restricted to Registered users only

Download (131kB) | Request a copy
[img] Text
8_BAB IV.pdf
Restricted to Registered users only

Download (549kB) | Request a copy
[img] Text
9_BAB V.pdf
Restricted to Registered users only

Download (571kB) | Request a copy
[img] Text
10_BAB VI.pdf
Restricted to Registered users only

Download (25kB) | Request a copy
[img] Text
11_Daftar Pustaka.pdf
Restricted to Registered users only

Download (99kB) | Request a copy
[img] Text
12_Lampiran.pdf
Restricted to Repository staff only

Download (431kB) | Request a copy

Abstract

INDONESIA: Penelitian ini bertujuan untuk merancang dan mengimplementasikan model Backpropagation Neural Network (BPNN) dalam memprediksi sisa umur operasional transformator berdasarkan data historis operasional seperti suhu, beban, dan kualitas minyak. Model BPNN dibangun dengan menggunakan arsitektur jaringan syaraf tiruan dengan beberapa lapisan tersembunyi, dan dievaluasi menggunakan validasi silang k-fold cross validation sebesar 10-fold untuk menguji konsistensi dan ketepatannya. Pengujian model dilakukan dengan membandingkan nilai learning rate 0.01 dan 0.03 untuk mendapatkan kinerja yang optimal. Hasil prediksi dari model BPNN mendapatkan kinerja prediksi yang sangat baik. Transformator 1 menunjukkan kinerja prediksi yang sangat baik, dengan rata-rata MSE 0.09 dan R-Squared 0.92. Transformator 2 mendapatkan rata-rata MSE 0.08, dan R-Squared 0.90. Transformator 3 mendapatkan rata-rata MSE 0.09 dan R-Squared 0.91. Transformator 4 dengan rata-rata MSE 0.08 dan R-Squared 0.94. Berdasarkan hasil prediksi yang telah didapat, model BPNN menunjukkan kemampuan dalam memprediksi sisa umur transformator dengan tingkat keberhasilan yang tinggi. Namun, kinerjanya dipengaruhi oleh karakteristik dan pola data operasional dari masing-masing transformator. ENGLISH: This study aims to design and implement a Backpropagation Neural Network (BPNN) model to predict the remaining operational life of transformers based on historical operational data such as temperature, load, and oil quality. The BPNN model was developed using an artificial neural network architecture with several hidden layers and evaluated using 10-fold cross-validation to test its consistency and accuracy. The model was tested by comparing learning rates of 0.01 and 0.03 to obtain optimal performance. The prediction results from the BPNN model demonstrated excellent predictive performance. Transformer 1 reached an average MSE of 0.09 and an R-Squared of 0.92. Transformer 2 reached an average MSE of 0.08 and an R-Squared of 0.90. Transformer 3 reached an average MSE of 0.09 and an R-Squared of 0.91. Transformer 4 reached an average MSE of 0.08 and an R-Squared of 0.94. Based on the prediction results, the BPNN model shows a high success rate in predicting the remaining life of transformers. However, its performance is influenced by the characteristics and operational data patterns of each individual transformer.

Item Type: Thesis (Sarjana)
Uncontrolled Keywords: Backpropagation; Neural Network; sisa umur; transformator; prediksi; validasi silang; akurasi; MSE; R-Squared
Subjects: Data Processing, Computer Science
Mathematics > Data Processing and Analysis of Mathematics
Physics > Data Processing and Analysis of Physics
Applied Physics > Electrical Engineering
Applied Physics > Transformers
Divisions: Fakultas Sains dan Teknologi > Program Studi Teknik Elektro
Depositing User: Muhammad Rusdiawan Triadi Akmal
Date Deposited: 27 Aug 2025 06:36
Last Modified: 27 Aug 2025 06:36
URI: https://digilib.uinsgd.ac.id/id/eprint/116305

Actions (login required)

View Item View Item