Akmal, Muhammad Rusdiawan Triadi (2025) Prediksi umur operasional transformator dengan algoritma Backpropagation Neural Network (BPNN) berdasarkan data suhu dan beban. Sarjana thesis, UIN Sunan Gunung Djati Bandung.
|
Text
1_Cover.pdf Download (41kB) | Preview |
|
|
Text
2_Abstrak.pdf Download (25kB) | Preview |
|
|
Text
3_skbebasplagiarism.pdf Download (192kB) | Preview |
|
|
Text
4_Daftar Isi.pdf Download (153kB) | Preview |
|
|
Text
5_BAB I.pdf Download (134kB) | Preview |
|
![]() |
Text
6_BAB II.pdf Restricted to Registered users only Download (630kB) | Request a copy |
|
![]() |
Text
7_BAB III.pdf Restricted to Registered users only Download (131kB) | Request a copy |
|
![]() |
Text
8_BAB IV.pdf Restricted to Registered users only Download (549kB) | Request a copy |
|
![]() |
Text
9_BAB V.pdf Restricted to Registered users only Download (571kB) | Request a copy |
|
![]() |
Text
10_BAB VI.pdf Restricted to Registered users only Download (25kB) | Request a copy |
|
![]() |
Text
11_Daftar Pustaka.pdf Restricted to Registered users only Download (99kB) | Request a copy |
|
![]() |
Text
12_Lampiran.pdf Restricted to Repository staff only Download (431kB) | Request a copy |
Abstract
INDONESIA: Penelitian ini bertujuan untuk merancang dan mengimplementasikan model Backpropagation Neural Network (BPNN) dalam memprediksi sisa umur operasional transformator berdasarkan data historis operasional seperti suhu, beban, dan kualitas minyak. Model BPNN dibangun dengan menggunakan arsitektur jaringan syaraf tiruan dengan beberapa lapisan tersembunyi, dan dievaluasi menggunakan validasi silang k-fold cross validation sebesar 10-fold untuk menguji konsistensi dan ketepatannya. Pengujian model dilakukan dengan membandingkan nilai learning rate 0.01 dan 0.03 untuk mendapatkan kinerja yang optimal. Hasil prediksi dari model BPNN mendapatkan kinerja prediksi yang sangat baik. Transformator 1 menunjukkan kinerja prediksi yang sangat baik, dengan rata-rata MSE 0.09 dan R-Squared 0.92. Transformator 2 mendapatkan rata-rata MSE 0.08, dan R-Squared 0.90. Transformator 3 mendapatkan rata-rata MSE 0.09 dan R-Squared 0.91. Transformator 4 dengan rata-rata MSE 0.08 dan R-Squared 0.94. Berdasarkan hasil prediksi yang telah didapat, model BPNN menunjukkan kemampuan dalam memprediksi sisa umur transformator dengan tingkat keberhasilan yang tinggi. Namun, kinerjanya dipengaruhi oleh karakteristik dan pola data operasional dari masing-masing transformator. ENGLISH: This study aims to design and implement a Backpropagation Neural Network (BPNN) model to predict the remaining operational life of transformers based on historical operational data such as temperature, load, and oil quality. The BPNN model was developed using an artificial neural network architecture with several hidden layers and evaluated using 10-fold cross-validation to test its consistency and accuracy. The model was tested by comparing learning rates of 0.01 and 0.03 to obtain optimal performance. The prediction results from the BPNN model demonstrated excellent predictive performance. Transformer 1 reached an average MSE of 0.09 and an R-Squared of 0.92. Transformer 2 reached an average MSE of 0.08 and an R-Squared of 0.90. Transformer 3 reached an average MSE of 0.09 and an R-Squared of 0.91. Transformer 4 reached an average MSE of 0.08 and an R-Squared of 0.94. Based on the prediction results, the BPNN model shows a high success rate in predicting the remaining life of transformers. However, its performance is influenced by the characteristics and operational data patterns of each individual transformer.
Item Type: | Thesis (Sarjana) |
---|---|
Uncontrolled Keywords: | Backpropagation; Neural Network; sisa umur; transformator; prediksi; validasi silang; akurasi; MSE; R-Squared |
Subjects: | Data Processing, Computer Science Mathematics > Data Processing and Analysis of Mathematics Physics > Data Processing and Analysis of Physics Applied Physics > Electrical Engineering Applied Physics > Transformers |
Divisions: | Fakultas Sains dan Teknologi > Program Studi Teknik Elektro |
Depositing User: | Muhammad Rusdiawan Triadi Akmal |
Date Deposited: | 27 Aug 2025 06:36 |
Last Modified: | 27 Aug 2025 06:36 |
URI: | https://digilib.uinsgd.ac.id/id/eprint/116305 |
Actions (login required)
![]() |
View Item |