Analisis sentimen terhadap penurunan tingkat pernikahan di Indonesia menggunakan algoritma Bidirectional Encoder Representations from Transformers (BERT)

Hamidah, Sarah Yusti (2025) Analisis sentimen terhadap penurunan tingkat pernikahan di Indonesia menggunakan algoritma Bidirectional Encoder Representations from Transformers (BERT). Sarjana thesis, UIN Sunan Gunung Djati Bandung.

[img]
Preview
Text
1_cover.pdf

Download (190kB) | Preview
[img]
Preview
Text
2_abstrak.pdf

Download (178kB) | Preview
[img]
Preview
Text
3_skbebasplagiarism.pdf

Download (155kB) | Preview
[img]
Preview
Text
4_daftarisi.pdf

Download (197kB) | Preview
[img]
Preview
Text
5_bab1.pdf

Download (304kB) | Preview
[img] Text
6_bab2.pdf
Restricted to Registered users only

Download (391kB) | Request a copy
[img] Text
7_bab3.pdf
Restricted to Registered users only

Download (583kB) | Request a copy
[img] Text
8_bab4.pdf
Restricted to Registered users only

Download (9MB) | Request a copy
[img] Text
9_bab5.pdf
Restricted to Registered users only

Download (190kB) | Request a copy
[img] Text
10_daftarpustaka.pdf
Restricted to Registered users only

Download (216kB) | Request a copy

Abstract

INDONESIA: Penurunan angka pernikahan di Indonesia menjadi isu sosial yang menarik untuk dianalisis melalui opini publik di media sosial. Penelitian ini menggunakan metode Sample, Explore, Modify, Model, and Assess (SEMMA) dengan algoritma Bidirectional Encoder Representations from Transformers (BERT) untuk melakukan analisis sentimen komentar YouTube terkait topik tersebut. Data dikumpulkan menggunakan teknik crawling dan diolah menggunakan text preprocessing serta Easy Data Augmentation (EDA) untuk penyeimbangan kelas. Model dilatih menggunakan delapan skenario, dengan skenario kedua memperoleh akurasi tertinggi sebesar 98.52%, F1-score 98.52%, precision 98.55%, dan recall 98.52% pada data validasi. Hasil analisis sentimen mengungkapkan kata kunci dominan yang berkaitan dengan nilai keluarga, ekonomi, dan pandangan sosial. Temuan ini diharapkan dapat menjadi rujukan dalam perumusan kebijakan dan program literasi pernikahan yang relevan dengan kondisi masyarakat Indonesia. ENGLISH: The decline in marriage rates in Indonesia has become a significant social issue that warrants analysis through public opinion on social media. This study employs the Sample, Explore, Modify, Model, and Assess (SEMMA) methodology combined with the Bidirectional Encoder Representations from Transformers (BERT) algorithm to perform sentiment analysis on YouTube comments related to the topic. Data were collected using crawling techniques and processed through text preprocessing as well as Easy Data Augmentation (EDA) to balance class distributions. The model was trained using eight scenarios, with the second scenario achieving the highest performance: 98.52% accuracy, 98.52% F1-score, 98.55% precision, and 98.52% recall on the validation set. Sentiment analysis results revealed dominant keywords associated with family values, economic factors, and social perspectives. These findings are expected to serve as a reference for formulating policies and marriage literacy programs relevant to Indonesian society.

Item Type: Thesis (Sarjana)
Additional Information: TIDAK ADA LAMPIRAN
Uncontrolled Keywords: Analisis Sentimen; BERT; SEMMA; Deep Learning; Pernikahan
Subjects: Data Processing, Computer Science
Divisions: Fakultas Sains dan Teknologi > Program Studi Teknik Informatika
Depositing User: Sarah Yusti Hamidah
Date Deposited: 28 Aug 2025 07:06
Last Modified: 28 Aug 2025 07:06
URI: https://digilib.uinsgd.ac.id/id/eprint/116405

Actions (login required)

View Item View Item