Irawan, Tony (2017) Perbandingan solusi optimal dari initial cost minimum method dan metode maximum supply with minimum cost untuk menyelesaikan masalah transportasi. Diploma thesis, UIN Sunan Gunung Djati Bandung.
|
Text (COVER)
1_cover.pdf Download (20kB) | Preview |
|
|
Text (ABSTRAK)
2_abstrak.pdf Download (103kB) | Preview |
|
|
Text (DAFTAR ISI)
3_daftarisi.pdf Download (202kB) | Preview |
|
|
Text (BAB I)
4_bab1.pdf Download (244kB) | Preview |
|
Text (BAB II)
5_bab2.pdf Restricted to Registered users only Download (385kB) | Request a copy |
||
Text (BAB III)
6_bab3.pdf Restricted to Registered users only Download (139kB) | Request a copy |
||
Text (BAB IV)
7_bab4.pdf Restricted to Registered users only Download (1MB) | Request a copy |
||
Text (BAB V)
8_bab5.pdf Restricted to Registered users only Download (125kB) | Request a copy |
||
Text (DAFTAR PUSTAKA)
9_daftarpustaka.pdf Restricted to Registered users only Download (187kB) | Request a copy |
Abstract
Masalah transportasi merupakan masalah yang sering dihadapi dalam bidang industri. Masalah transportasi ini muncul karena letak geografis yang berbeda untuk mendistribusikan barang dari sumber persediaan ke beberapa tempat tujuan sehingga biaya pengiriman juga tidak ada yang sama. Perusahaan ingin mendapatkan keuntungan, tetapi dengan biaya yang seminimum mungkin. Oleh karena itu, muncul metode transportasi yang digunakan untuk mengatasi masalah transportasi. Dalam tugas akhir ini terdapat 2 metode untuk menyelesaikan masalah transportasi, yaitu Initial Cost Minimum Method dan Metode Maximum Supply with Minimum Cost. Perbedaan kedua metode ini adalah pada algoritma untuk menyelesaikan masalah. Pada Initial Cost Minimum Method, dicari terlebih dahulu nilai penalti terbesar pada tiap baris dan tiap kolom yang dilakukan secara bergantian. Dalam menentukan nilai penalti kolom, dilakukan dengan cara mencari nilai dari selisih antara dua biaya terkecil pada tiap kolom. Setelah itu, mencari nilai penalti baris yang dilakukan dengan cara mencari nilai dari selisih antara dua biaya terbesar pada tiap baris. Setelah memperoleh nilai penalti terbesar, kemudian mencari biaya terkecil pada nilai penalti yang dipilih agar dapat menentukan sel basis. Pada Metode Maximum Supply with Minimum Cost dapat dilakukan dengan cara mencari persediaan terbesar yang terdapat pada baris persediaan, kemudian mencari biaya terkecil pada baris persediaan yang dipilih. Setelah memperoleh solusi layak awal, selanjutnya dilakukan uji optimalitas dengan menggunakan Modified Distribution agar mendapatkan solusi optimal. Setelah diterapkan pada 4 kasus, Initial Cost Minimum Method mempunyai hasil yang lebih optimal daripada Metode Maximum Supply with Minimum Cost karena pada Initial Cost Minimum Method tidak memerlukan solusi perbaikan untuk mendapatkan hasil yang optimal. Transportation problems are problems that are often faced in the industrial sector. This transportation problem arises because of different geographical locations to distribute goods from sources to several destinations so shipping costs are also different. The company wants to make a profit, but at a minimum cost. Therefore, a transportation method appears to be used to solve transportation problems. In this thesis there are 2 methods to solve transportation problems, namely Initial Cost Minimum Method and Maximum Supply with Minimum Cost Method. The difference between these 2 methods is the algorithm for solving transportation problems. At The Initial Cost Minimum Method, first look for the biggest penalty value of each row and each column is carried out alternately. In determining the column penalty value is done by finding the value of the difference between the two smallest costs in each column. After that, look for the row penalty value that is done by finding the value of the difference between the two biggest costs in each row. After obtaining the biggest penalty value, then look for the smallest cost contained in the selected penalty value in order to obtain the basic variables. At The Maximum Supply with Minimum Cost Method can be done by finding the largest source contained in each row, then looking for the smallest cost on the selected row. After obtaining a initial basic feasible solution, then the optimality test is performed using Modified Distribution to get the optimal solution. After being applied to 4 cases, The Initial Cost Minimum Method has more optimal results than The Maximum Supply with Minimum Cost Method because The Initial Cost Minimum Method does not require a repair solution to get optimal results.
Item Type: | Thesis (Diploma) |
---|---|
Uncontrolled Keywords: | Initial Cost Minimum Method; Maximum Supply with Minimum Cost; Solusi Layak Awal; Solusi Optimal; Modified Distribution |
Subjects: | Production, Industrial Economics Mathematics Mathematics > Research Methods of Mathematics Applied mathematics > Mathematical Optimization |
Divisions: | Fakultas Sains dan Teknologi > Program Studi Matematika |
Depositing User: | Tony Irawan |
Date Deposited: | 18 Sep 2018 08:23 |
Last Modified: | 18 Sep 2018 08:23 |
URI: | https://digilib.uinsgd.ac.id/id/eprint/13851 |
Actions (login required)
View Item |