Fathonah, Feni Siti (2015) Pencarian solusi persamaan diferensial parsial nonlinier menggunakan metode transformasi pertubasi homotopi dan metode dekomposisi adomian. Diploma thesis, UIN Sunan Gunung Djati Bandung.
|
Text (COVER)
1_COVER.pdf Download (198kB) | Preview |
|
|
Text (ABSTRAK)
2_ABSTRAK.pdf Download (376kB) | Preview |
|
|
Text (DAFTAR ISI)
3_DAFTAR ISI.pdf Download (425kB) | Preview |
|
|
Text (BAB I)
4_BAB I.pdf Download (407kB) | Preview |
|
Text (BAB II)
5_BAB II.pdf Restricted to Registered users only Download (740kB) |
||
Text (BAB III)
6_BAB III.pdf Restricted to Registered users only Download (461kB) |
||
Text (BAB IV)
7_BAB IV.pdf Restricted to Registered users only Download (810kB) |
||
Text (BAB V)
8_BAB V.pdf Restricted to Registered users only Download (434kB) |
||
Text (DAFTAR PUSTAKA)
9_DAFTAR PUSTAKA-baru.pdf Restricted to Registered users only Download (316kB) |
Abstract
INDONESIA Persamaan diferensial parsial nonlinear adalah salah satu tinjauan dalam bidang ilmu matematika. Persamaan nonlinier sangat sulit untuk dipecahkan secara efektif baik secara numerik maupun analisis. Beberapa metode telah dikembangkan untuk menyelesaikan persamaan diferensial parsial nonlinier, salah satunya adalah Metode Transformasi Pertubasi Homotopi(MTPH) dan Metode Dekomposisi Adomian(MDA). Kedua metode ini memiliki teknik yang sangat kuat dan efisien untuk memecahkan persamaan diferensial parsial nonlinier. Dalam metode transformasi pertubasi homotopi terdapat He’s polinomial dan dalam metode dekomposisi adomian terdapat adomian polinomial yang digunakan untuk menemukan solusi. Solusi dari dua metode tersebut menunjukkan hasil yang sama dalam bentuk tertutup. ENGLISH Nonlinear partial differential equations is one observations in the field of mathematics. Nonlinear equations is very difficult to solve in numerical and analytical. Several methods have been developed to solve nonlinear partial differential equations, one of which is the homotopy perturbation transformation method (HPTM) and adomian decomposition method (ADM). Both of methods have a very powerful technique and efficient for solving nonlinear partial differential equations. Homotopy pertubation transformation method contained He’s polynomial and adomian decompotition method contained adomian polynomial for finding solution. Solution of homotopy pertubation transformation method and adomian decompotition method show the same result in closed form.
Item Type: | Thesis (Diploma) |
---|---|
Uncontrolled Keywords: | Diferensial Parsial Nonlinier; Transformasi Laplace; Metode Pertubasi Homotopi; He’s Polinomial; Adomian Polinomial; |
Subjects: | Mathematics > Data Processing and Analysis of Mathematics |
Divisions: | Fakultas Sains dan Teknologi > Program Studi Matematika |
Depositing User: | rofita fita robi'in |
Date Deposited: | 25 Jan 2019 10:11 |
Last Modified: | 25 Jan 2019 10:11 |
URI: | https://digilib.uinsgd.ac.id/id/eprint/18277 |
Actions (login required)
View Item |