Invers matriks laplace yang digeneralisasi dan pembuktian teorema-teorema yang berkaitan

Susanto, Irwan (2013) Invers matriks laplace yang digeneralisasi dan pembuktian teorema-teorema yang berkaitan. Diploma thesis, UIN Sunan Gunung Djati Bandung.

[img]
Preview
Text (COVER)
1_cover.pdf

Download (133kB) | Preview
[img]
Preview
Text (ABSTRAK)
2_abstrak.pdf

Download (115kB) | Preview
[img]
Preview
Text (DAFTAR ISI)
3_daftarisi.pdf

Download (104kB) | Preview
[img]
Preview
Text (BAB I)
4_bab1.pdf

Download (211kB) | Preview
[img] Text (BAB II)
5_bab2.pdf
Restricted to Registered users only

Download (504kB)
[img] Text (BAB III)
6_bab3.pdf
Restricted to Registered users only

Download (449kB)
[img] Text (BAB IV)
7_bab4.pdf
Restricted to Registered users only

Download (129kB)
[img] Text (DAFTAR PUSTAKA)
8_daftarpustaka.pdf
Restricted to Registered users only

Download (209kB)

Abstract

The Laplacian Mtarix is a representation of the a connected graph. The Laplacian Matris is reaql and simetric matrix. The Laplacian matrix also singular matrix because the sum of each row and each is zero coloumns. Eigen value and eigen vector of Laplacian matrix is. From that equation we can see that zero is one of eigen value of the Laplacian Matrix. So, invers of the Laplacian matrix will be generalized because we cant defined inverses the Laplacian matrix is zero. And then we will established the some properties of the generalized of the Laplacian matrix. Theoem and Lemma learning from this mini thesis of the generalized invers of the Laplacian matrix will be proved in this work.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Laplacian Matrix; Eigen Value and Eigen Vector Laplace; Generalized Invers of The Laplacian Matrix;
Subjects: Mathematics
Mathematics > Research Methods of Mathematics
Divisions: Fakultas Sains dan Teknologi > Program Studi Matematika
Depositing User: Users 11 not found.
Date Deposited: 11 Feb 2016 06:47
Last Modified: 16 Aug 2019 08:50
URI: https://digilib.uinsgd.ac.id/id/eprint/359

Actions (login required)

View Item View Item