Model penyebaran Poliomyelitis dengan adanya vaksinasi dan treatment pada gejala awal infeksi

Lisnawati, Detita (2021) Model penyebaran Poliomyelitis dengan adanya vaksinasi dan treatment pada gejala awal infeksi. Sarjana thesis, UIN Sunan Gunung Djati Bandung.

[img]
Preview
Text (COVER)
1_cover.pdf

Download (154kB) | Preview
[img]
Preview
Text (ABSTRAK)
2_abstrak.pdf

Download (214kB) | Preview
[img]
Preview
Text (DAFTAR ISI)
3_daftarisi.pdf

Download (113kB) | Preview
[img]
Preview
Text (BAB I)
4_bab1.pdf

Download (341kB) | Preview
[img] Text (BAB II)
5_bab2.pdf
Restricted to Registered users only

Download (455kB) | Request a copy
[img] Text (BAB III)
6_bab3.pdf
Restricted to Registered users only

Download (624kB) | Request a copy
[img] Text (BAB IV)
7_bab4.pdf
Restricted to Registered users only

Download (487kB) | Request a copy
[img] Text (BAB V)
8_bab5.pdf
Restricted to Registered users only

Download (240kB) | Request a copy
[img] Text (DAFTAR PUSTAKA)
9_daftarpustaka.pdf
Restricted to Registered users only

Download (217kB) | Request a copy

Abstract

Dalam skripsi ini akan dikaji model matematika untuk penyebaran penyakit poliomyelitis menggunakan model SVEI (Suspectible, Vaccinated, Exposed, Infective). Analisis model dilakukan dengan mencari titik ekuilibrium, bilangan repoduksi dasar (R_0), syarat eksistensi dan kestabilannya, serta membuat simulasi numerik dan simulasi sensitivitasnya. Bilangan reproduksi dasar (R_0) diperoleh untuk menentukan dinamika stabilitas dan hasil penyakit. Jika R_0<1 keseimbangan bebas penyakit stabil dan penyakit hilang dari populasi, sedangkan jika R_0>1 keseimbangan endemik stabil dan penyakit menyebar di populasi. Dari hasil analisis dan interpretasi dengan data yang diberikan disimpulkan bahwa jika laju vaksin lengkap pada individu rentan dan laju perawatan pada gejala awal infeksi ditingkatkan dapat berperan menurunkan penyebaran virus polio. In this thesis, a mathematical model for the spread of poliomyelitis will be studied using the SVEI (Suspectible, Vaccinated, Exposed, Infective) model. Model analysis is done by finding the equilibrium point, basic reproduction number (R_0), conditions for existence and stability, as well as making numerical simulations and sensitivity simulations. The basic reproduction number (R_0) was obtained to determine the dynamics of stability and disease outcome. If R_0<1 the disease-free balance is stable and the disease disappears from the population, whereas if R_0>1 the endemic balance is stable and the disease spreads in the population. From the results of analysis and interpretation with the data provided, it is concluded that if the rate of complete vaccine in susceptible individuals and the rate of treatment for early symptoms of infection is increased, it can play a role in reducing the spread of the polio virus.

Item Type: Thesis (Sarjana)
Uncontrolled Keywords: vaksin; treatment; analisis senstivitas; virus polio; Bilangan reproduksi dasar;
Subjects: Mathematics > Mathematicians
Divisions: Fakultas Sains dan Teknologi > Program Studi Matematika
Depositing User: Detita Lisnawati
Date Deposited: 13 Sep 2021 08:44
Last Modified: 13 Sep 2021 08:44
URI: https://digilib.uinsgd.ac.id/id/eprint/43159

Actions (login required)

View Item View Item