Model matematika SEIQR untuk penyebaran Covid-19 dengan vaksinasi dan karantina

Mudrikah, Zen Aslah (2022) Model matematika SEIQR untuk penyebaran Covid-19 dengan vaksinasi dan karantina. Sarjana thesis, UIN Sunan Gunung Djati Bandung.

[img]
Preview
Text (COVER)
1_cover.pdf

Download (129kB) | Preview
[img]
Preview
Text (ABSTRAK)
2_abstrak.pdf

Download (143kB) | Preview
[img]
Preview
Text (DAFTAR ISI)
3_daftarisi.pdf

Download (1MB) | Preview
[img]
Preview
Text (BAB I)
4_bab1.pdf

Download (1MB) | Preview
[img] Text (BAB II)
5_bab2.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[img] Text (BAB III)
6_bab3.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[img] Text (BAB IV)
7_bab4.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[img] Text (BAB V)
8_bab5.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[img] Text (DAFTAR ISI)
9_daftarpustaka.pdf
Restricted to Registered users only

Download (120kB) | Request a copy

Abstract

INDONESIA : Terhitung sejak akhir tahun 2019, kemunculan wabah virus baru bernama Corona Virus Disease 2019 (COVID-19) telah menyebar ke seluruh dunia dan telah menjadi perhatian berbagai pihak. Penyakit yang diakibatkan oleh Severe Acute Respiratory Syndrome Coronavirus2 (SARS-CoV-2). Tingginya laju penyebaran memberikan tantangan tersendiri bagi berbagai negara dipenjuru dunia dalam melakukan berbagai kebijakan dan solusi yang tepat dalam penanganannya. Pada Penelitian ini membahas model matematika dan dinamika transmisi penyebaran COVID-19. Model yang digunakan adalah model epidemiologi SEIQR, dimana terdiri dari lima kompartemen yaitu Susceptible (S), Exposed (E), Infected (I), Quarantined (Q) dan Recovered (R) yang memiliki dua titik kesetimbangan, yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik. Hasil analisis dan simulasi menunjukkan apabila laju vaksinasi dan karantina besar mengakibatkan tingkat penyebaran penyakit akan menurun dan tidak terjadi endemik. ENGLISH : Since the end of 2019, the emergence of a new virus outbreak called Corona Virus Disease 2019 (COVID-19) has spread throughout the world and has attracted the attention of various parties. Disease caused by Severe Acute Respiratory Syndrome Coronavirus2 (SARS-CoV-2). The high rate of spread presents its own challenges for various countries around the world in carrying out various policies and appropriate solutions in handling it. This study discusses the mathematical model and the dynamics of the transmission of the spread of COVID-19. The model used is the SEIQR epidemiological model, which consists of five compartments, namely Susceptible (S), Exposed (E), Infected (I), Quarantined (Q) and Recovered (R) which have two equilibrium points, namely the disease-free equilibrium point and endemic equilibrium point. The results of the analysis and simulation show that if the rate of vaccination and quarantine is large, the rate of disease spread will decrease and there will be no endemic.

Item Type: Thesis (Sarjana)
Uncontrolled Keywords: COVID-19;Vaksinasi;Karantina;Endemik;Kestabilan
Subjects: Mathematics
Mathematics > Data Processing and Analysis of Mathematics
Mathematics > Research Methods of Mathematics
Analysis, Theory of Functions > Differential Calculus and Equations
Applied mathematics
Divisions: Fakultas Sains dan Teknologi > Program Studi Matematika
Depositing User: Zen Aslah Mudrikah
Date Deposited: 31 Mar 2022 07:46
Last Modified: 31 Mar 2022 07:46
URI: https://digilib.uinsgd.ac.id/id/eprint/50018

Actions (login required)

View Item View Item