Liswara, Fathya Inten (2022) Traveling Salesman Problem dengan Ant Colony Optimization dan Modified Ant Colony Optimization. Sarjana thesis, UIN Sunan Gunung Djati Bandung.
|
Text (COVER)
1_cover.pdf Download (41kB) | Preview |
|
|
Text (ABSTRAK)
2_abstrak.pdf Download (84kB) | Preview |
|
|
Text (DAFTAR ISI)
3_daftarisi.pdf Download (252kB) | Preview |
|
|
Text (BAB I)
4_bab1.pdf Download (498kB) | Preview |
|
Text (BAB II)
5_bab2.pdf Restricted to Registered users only Download (493kB) | Request a copy |
||
Text (BAB III)
6_bab3.pdf Restricted to Registered users only Download (475kB) | Request a copy |
||
Text (BAB IV)
7_bab4.pdf Restricted to Registered users only Download (1MB) | Request a copy |
||
Text (BAB V)
8_bab5.pdf Restricted to Registered users only Download (206kB) | Request a copy |
||
Text (DAFTAR PUSTAKA)
9_daftarpustaka.pdf Restricted to Registered users only Download (305kB) | Request a copy |
Abstract
INDONESIA : Traveling Salesman Problem (TSP) merupakan suatu permasalahan menemukan rute perjalanan paling murah dari suatu titik dan mengunjungi semua titik lainnya, dimana masing-masing titik dikunjungi hanya satu kali, dan harus kembali ke titik asal tersebut. Pada penelitian ini masalah TSP diselesaikan dengan menggunakan Ant Colony Optimization (ACO) dan Modified Ant Colony Optimization (MACO). ACO merupakan teknik probabilitas untuk menyelesaikan permasalahan, berdasarkan tingkah laku semut dalam sebuah koloni yang mencari sumber makanan. Sedangkan MACO merupakan modifikasi dari ACO dengan mengkombinasikannya dengan meningkatkan pemilihan jalur dan meningkatkan pembaharuan feromon. Kemudian membandingkan hasil dari kedua algoritma tersebut. ENGLISH : The Traveling Salesman Problem (TSP) is a point problem finding the cheapest travel route from one point and visiting all other points, where each point is visited once, and must return to only that origin. In this study, the TSP problem was solved using Ant Colony Optimization (ACO) and Modified Ant Colony Optimization (MACO). ACO is a probability technique for solving problems, based on the behavior of ants in a colony looking for food sources. While MACO is a modification of ACO by combining and improving pathway selection and increasing pheromones. Then compare the results of the two algorithms.
Item Type: | Thesis (Sarjana) |
---|---|
Uncontrolled Keywords: | Traveling Salesman Problem (TSP); Ant Colony Optimization (ACO); Modified Ant Colony Optimization (MACO); Pembaruan Feromon. |
Subjects: | Mathematics Mathematics > Research Methods of Mathematics |
Divisions: | Fakultas Sains dan Teknologi > Program Studi Matematika |
Depositing User: | Fathya Inten Liswara |
Date Deposited: | 16 Sep 2022 01:35 |
Last Modified: | 16 Sep 2022 01:35 |
URI: | https://digilib.uinsgd.ac.id/id/eprint/56951 |
Actions (login required)
View Item |