
978-1-6654-5122-2/22/$31.00 ©2022 IEEE

Mobile Robot Navigation in Dynamic Environments
Using Reinforcement Learning

Fauzi Abdul Rohim
Electrical Engineering Department

Telkom University

Bandung, Indonesia
fauziabdulrohim@student.telkomuniversity.ac.id

Syamsul Rizal
Electrical Engineering Department

Telkom University

Bandung, Indonesia
syamsul@telkomuniversity.ac.id

Sony Sumaryo
Electrical Engineering Department

Telkom University

Bandung, Indonesia
sonysumaryo@telkomuniversity.ac.id

Eki Ahmad Zaki Hamidi
Electrical Engineering Department
 UIN Sunan Gunung Djati Bandung

Bandung, Indonesia
ekiahmadzaki@uinsgd.ac.id

Abstract—The navigation system is one of the most

important and crucial concerns in the research of mobile

robots. Perception, cognition, action, human-robot interaction,

and control systems are among the difficulties that have been

resolved. Each navigation system must handle the

aforementioned common designs to ensure that all duties may

be completed. The navigation system is built on learning

techniques that provide the ability to reason in the face of

environmental uncertainty. However, the design will be

difficult to build due to a number of factors, including inherent

uncertainties in the unorganized environment. A more

expensive design cost, computational resources, and larger

memory are all required in this case. Navigating an

autonomous robot in an uncontrolled environment is difficult

because it necessitates the cooperation of a number of

subsystems. Mobile robots must be intelligent in order to adapt

to navigation in unfamiliar environments, such as

environmental cognition, behavioral decisions, and learning.

The robot will then navigate around these obstacles without

collapsing and arrive at a specific destination point. Combining

two processes, such as environmental mapping and robot

behaviors, can result in behavior-based navigation. Obstacle

avoidance, wall following, corridor following, and target

seeking are some examples. If only one of the two processes is

used, the system should be used in two ways. When this

approach is used, two major issues are bound to arise: I the

combination of two simple behaviors to form a complex one,

and (ii) the integration of more than two behaviors. Behavior

induced by multiple concurrent goals can be smoothly blended

into a dynamic sequence of control action. This study is

concerned with the automatic navigation of a mobile robot

from its starting point to its destination point. To solve a few

sub-problems associated with automatic navigation in an

uncontrolled environment. Monte Carlo simulation is used to

evaluate the algorithm’s performance and show under what

conditions the algorithm performs better and worse. Obtaining

position mapping to optimize action on mobile robots using a

reinforcement learning framework. Reinforcement learning

necessitates a large number of training samples, making it

difficult to apply directly to real-world mobile robot navigation

scenarios. To address this issue, the robot is trained in a

Gazebo platform middleware Robot Operating System (ROS)

simulation environment, followed by Q-Learning training on

mobile robots.

Keywords—navigation, mobile robot, dynamic environment

I. INTRODUCTION

Data from robot sensors can be mapped and used by
robots for navigation and movement planning. In addition,

data from sensors is also used to estimate the position of the
robot needed when mapping the surrounding environment.
All modules that represent one behavior work together [1].
The main attention is paid to two approaches to coordination
mechanisms, namely competitive (arbiter) and cooperative
(command) fusion. Meanwhile, cooperative coordination
combines all existing behavior outputs and determines the
performance of the robot‘s trajectory. Its main feature is the
hybrid coordination of behavior, between competitive and
cooperative approaches.

A mobile robot must have high navigation abilities before
it can perform other jobs such as carrying items or
performing mapping activities. This allows the robot to go
from one location to another without colliding with
obstacles. When dealing with areas containing static
impediments, such as industrial locations like warehouses,
current technology allows mobile robots to work very
successfully. However, there are areas for further
development, such as creating a navigation system capable
of dealing with complex environments, such as those
encountered by humans. [7].

It’s not easy to create algorithms and program robots that
can move in a static or dynamic environment. Many related
research fields have been conducted, including the topic of
navigation systems and several fragments of topics from
related research fields, such as designing robotic paths with
the A* algorithm, mapping and localization using mobile
robots, and real-time collision avoidance on mobile robots
using deep reinforcement. On the Turtlebot robot platform,
learning, autonomous navigation using reinforcement
learning, and transferring learning from simulation to robot
automobile. The navigation system’s use of non-learning
algorithms allows the mobile robot to plan and follow a path
to its destination, but the algorithm isn’t good enough to
provide local planning skills in an unfamiliar environment,
where the robot is still stuck in the implementation area.
minima in the immediate vicinity While the method avoids
barriers that did not exist in the prior map, it also necessitates
strong parameter assumptions and is extremely difficult to
set manually.One of the most powerful methods for solving
navigating issues in complicated and unknown surroundings
is machine learning. Unfortunately, earlier research only
tested at the simulation level, and only a handful were
evaluated in real navigation settings, or only on robots that
were particularly supported by ROS.

20
22

 8
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 W

ire
le

ss
 a

nd
 T

el
em

at
ic

s (
IC

W
T)

 |
97

8-
1-

66
54

-5
12

2-
2/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
W

T5
58

31
.2

02
2.

99
35

35
9

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on April 18,2023 at 06:37:32 UTC from IEEE Xplore. Restrictions apply.

One of the most suitable and widely used RL learning
methods for autonomous robot applications is RL with the
Q-Learning algorithm type. This algorithm uses a Q table to
match discrete states and actions only. Meanwhile, in
autonomous robots, state size and sensor data are continuous,
so this becomes impractical. Therefore, to extend the
QLearning algorithm related to continuous state and action,
L. Jouffe in [2] combines Q-Learning. Reinforcement
learning is the optimal control method, when the agent starts
from an ineffective solution which gradually increases
according to the knowledge gained to solve successively.
decision problems [3]. To use reinforcement study, several
approaches are possible. The first consists of manually
discrete issues to obtain state and action space; which can be
used directly by the algorithm using table Q [3].

However, it is necessary to pay attention to discretization
options, so as to allow true learning by providing situations
and actions that contain understandable rewards. The second
method consists of working on a continuous state and action
space using a value function [4]. Indeed, to use
reinforcement learning, it is necessary to correctly estimate
the value function. The results obtained show a substantial
improvement of the robot’s behavior and learning speed.

The goal of this research is to show how the Q-learning
algorithm, which is a type of reinforcement learning, may be
combined with the ROS stack navigation system to give
robotic automatic navigation skills. Q-Learning is a
representation of a machine learning algorithm based on a
driven learning process, in which an agent learns and
discovers via experience the pattern of action that will
provide him with the best longterm reward. All of these
navigation systems are made with ROS, which is modular
and multithreaded, making it simple to create navigation
functions and allowing numerous jobs to be accomplished at
once.

II. METHOD

A. Behavior-based Robot (BBR)

The robot will be controlled directly by a low level
controller (in the form of a P controller) which functions to
control the movement of the robot by sending perceptual
signals (through its sensors) to the high level controller. Then
the signal becomes a stimulus input that will activate certain
behaviors (which are coordinated by the behavior
coordination section). The output of the behavior
coordination is given to the low level controller for
controlling the robot. The block diagram of the whole robot
is shown in the following picture (see Figure 1).

B. Reinforcement Learning

Reinforcement learning is a kind of middle ground
between supervised learning and unsu- pervised learning,
where the algorithm is in a way told only how well it works,
not knowing what the exact output of the system should be.
Thus, an incentive learning system, pop- ularly called an
agent, must explore and test different solutions and actions to
find out how to come up with the right answers. The only
information.

Fig. 1. Behavior based block diagram on mobile robot

The agent receives from the training algorithm is a
reward if the action he has taken is favorable, or a penalty if
it is not. A standardized schematic representation of an
incentive learning system is shown in the following (Figure
2).

Fig. 2. Interaction diagram between learner and environment

This type of training is most often encountered in
sequential decision-making and man- agement problems,
where it is impossible to provide explicit supervision to the
training algorithm. The branches in which stimulated
learning is most often applied are robotics, game theory,
autonomous driving, finance, speech processing,
recognition, and many oth- ers. Since one of the algorithms
of learning with encouragement was used to make this
thesis, most of this chapter will be dedicated to this type of
learning, while learning with supervision and learning
without supervision will remain only briefly described. In
order to understand the setting of the issue of learning with
encouragement, it is first necessary to introduce the concept

of Markov’s decision-making process (MDP). (Figure 2).

1)Q-Learning: Q-Learning is competitive learning where
there are agents with the ability to learn to act optimally by
evaluating the consequences of their actions. States that Q-
Learning is a Q function that tries to estimate the next
discounted reinforcement signal to take actions from the
given states. Q-learning is one of the free-learning models in
RL Engineering. Use of Q-learning to find the optimal value
of Q-value (action value function). During the learning
process the Q value will continue to be updated, from the
old Q value to the new Q value. Any change in the value of

Q depends on the selection of an action on the service.

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on April 18,2023 at 06:37:32 UTC from IEEE Xplore. Restrictions apply.

Q-learning has a way of working by evaluating each
episode, the process in one episode is said to end if the agent
has reached the goal state point, and every action will affect
the Q value. The Q value is used as a ”brain” by the agent
during the learning process. For more details, here is a

picture of the Q-Learning algorithm (Figure 3):

Fig. 3. Q Learning Algorithm on Robot

C. Design of Q-Learning Algorithm

In order to improve the control system based on the
closed loop controller, the artificial intelligence algorithm
described, the Q learning algorithm, will also be designed.
In this way, the robot, with the help of LIDAR sensors, will
have information about obstacles in its path and will learn to
avoid them. The first step in the process of designing a Q-
learning algorithm is to discrete the state and action space
and define the reward function that the agent will receive for
the action taken. Only when these things are defined is it
possible to start the training process, which will eventually
lead to the convergence of the algorithms and the realization
of the desired agent performance.

1)Discretization of state space and action: The agent
state space is based on measurements from the laser distance
sensor. Since the laser sensor used measures distances in the
range 12cm to 3.5m, 3560 around the robot, it is clear that
this will result in a very large state space that needs to be
discretized. in some way so that the algorithm can converge.

2)First, the distance measurement is limited to a
maximum of 1m and it is chosen that, the LIDAR

measurement is in the range [−750,750] in relation to the
movement direction of the robot which is included in the
state discretization process, which is a valid assumption
because obstacles are greater than 1m distance from or
behind robots do not pose a hazard and should not be
considered.

State space consists of 4 state variables (x1,x2,x3,x4)

which are determined based on the obstacle distance from

the robot and its position. The variables x1 and x2 are
determined based on the distance of the closest obstacle to
the robot. The distance marker is denoted by d, the state

variable declares x1 and x2 is defined as follows:

 (1)

The distance d is calculated separately for the left and

right sides of the robot, where x1 corresponds to the left and

x2 to the right. An illustration of the state of the sub-space

variables x1, and x2.

The two remaining state variables x3 and x4 are
determined based on the position of the obstacle relative to
the robot. Assume that the obstacle to the robot is denoted
by p, and represents the angle at which the obstacle is
detected by the

LIDAR, then let the segments and s2 :

, where h indicates the width of the

LIDAR range, which is 75◦. Then the calculation of the

variables of the state x3 and x4, as follows:

 (2)

The position p is calculated separately for the left and

especially for the right side of the robot, where x3

corresponds to the left and x4 to the right. It should be noted
that the values of state variables are assigned with

decreasing priority, which means that if the condition for xi =

0 is met, it will be higher priority than the condition for xi =

1, which in that case will not be checked. This makes sense
because the highest priority will be the obstacles that are
directly in front of the robot. An illustration of this division

of the state subspace of variables x3 and x4.The next step is
to discrete the action space that the agent can take. To make
the algorithm as simple as possible, we define 3 actions that
the agent can take: move forward, turn left, and turn right.
Each of these actions is determined by the linear and angular

velocity of the robots vx and ωz, as follows:

forward
turnleft
turnright

(3)

Forward
 Turnleft

 turnright

 (4)

2) Defining the Reward Function: The next step in
designing the algorithm is to define the reward function
needed to determine the Q-value and fill in the given Q-
table. The reward function is defined as a combination of
three different reward functions:

 (5)

The reward function r1 is defined to provide a positive
reward if the agent moves in a straight line, and a small
negative reward if he turns. The purpose of a small negative
reward when the agent turns is to give priority to moving
forward so that the agent’s movement is directed to the
desired position.

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on April 18,2023 at 06:37:32 UTC from IEEE Xplore. Restrictions apply.

 (6)

The reward r2 is positive if the weighted cumulative
distance from the obstacle decreases. The cumulative
distance is denoted by is the robot’s distance from the
obstacle at time t and dt-1 is the robot’s distance from the
obstacle at the time before t . The weight vector W is
defined so that it has the highest value r2 at a point in the
robot direction and decreases linearly as the LIDAR
measurement angle increases symmetrically on both sides.

The notation W deltad represents the scalar product eWidi

which returns a single number. r1 cannot be greater than the
negative reward on the function r2, so the agent has no
tendency to move towards the hitch. Also, the positive
reward r2 must outweigh the negative payoff of r1 to give
the agent priority to avoid hindrances over other actions.

 (7)

The reward function r3 aims to prevent sudden changes
in the turning direction of the agent, that is, to make his
movements as smooth as possible. To assign this function as
the highest priority, the value of the negative reward must be
greater than the positive reward of the r2 function.

The total reward rt will be equal to the sum of the values
of the previous three reward functions if there is no
collision, while the very large negative reward is -100 if
there is a collision. Collision is defined as:

 (8)

Where Wt is the weight vector which has the smallest

value at a point in the direction of the robot’s movement and
increases linearly as the LIDAR measurement angle
increases symmetrically on both sides, and dt is the distance
vector representing the LIDAR measurement. Such an
arrangement gives higher priority to obstacles directly in
front of the robot, while the distance from adjacent obstacles
tends to increase to reduce their impact. The distance of 14

cm is selected for the limit value dcollision.

3) Policy Determination: To select the best action, the
QLearning algorithm requires a search strategy to determine
the actions taken by the agent as a function of the agent’s

state and environment, which is called Policy (π)). The two
strategic models that will be used in this study will provide
the tradeoff compromise that has been mentioned in the
explanation in Chapter II, namely the greedy - search and
the algorithm based on the Boltzmann distribution, which is
popularly called softmax. Greedy - search is based on
selecting the best action using probability 1 -, whereas with
probability a random action is chosen, for example:

 (9)

The symbol a∗ represents the optimal action, while
represents random action, and the eps parameter is selected
in the range 0 to 1. Changing the eps parameter will change
how the training process takes place, if a random value of r
is less than the exploration rating (in the case of this is 1

the agent will choose the action with the highest Q-value
in the Q-table, while if the random value of r is greater than
or equal to the exploration rating (), the agent will choose
the action at random. In this way, the agent in the early
stages of training will choose many actions at random,
which is called the exploration phase. Then over time and as
the agent’s knowledge increases, the agent will adopt greedy
behavior in the exploitation phase, i.e. the agent will only
take action with the highest Q-value in the Q-table [5]. The
problem with the greedy - search strategy is that all actions
will be randomly selected with a uniform probability
distribution at the start, meaning that the probability of
finding a good action and a bad action is the same, so the
search strategy for the best action is not optimal due to the
high value action. .To overcome this, a Boltzmann
distribution strategy such as softmax is used.

Softmax’s search strategy is based on selecting an action
based on probability considering the Q-value of the
actionstate pair. The probability of selecting an action is

proportional to , which means an agent in the state s will

choose an action a with a large probability [6]:

 (10)

The T parameter determines how random the action will

be. If the value of T is large, the set of actions will be
randomly selected with proportional probability. whereas at

lower values T the action set is selected with a higher value

of Q. If T is zero, the action with the highest Q value will
continue to be selected. In the early stages of training the

value of T is chosen higher, which will eventually drop to
zero as the agent gains knowledge [6].

TABLE I. MAPPING OF ACTION SPACE AND STATE ON Q-TABLE

III. RESULT AND DISCUSSION

A. Algorithm of Q-Learning

Define abbreviations and acronyms the first time they are
uFor the learning algorithm parameter Q itself, the values
α=0.3 and γ= 0.9 were chosen to ensure slower agent
training, as well as to account for the long-term effects of the
current action. The training process is carried out in 200
epochs, where the maximum number of agent actions during

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on April 18,2023 at 06:37:32 UTC from IEEE Xplore. Restrictions apply.

one epoch is 300. The simulation results that aim to compare
search strategies are shown in the following graph:

Fig. 4. Average number of agent steps through epochs for a parameter
,Accumulated agent reward through epochs for a parameter, Accumulated
agent reward through epochs for a parameter,Average number of agent
steps through epochs for a parameter

The accumulated rewards and the average number of
agents steps are averaged over 10 epochs to create the
smoothest possible graph, emphasizing their trend in
relation to the value at each less important point. Based on
the attached graph, it can be clearly concluded that the
search for softmax is a better choice in certain problems
because it successfully converges towards the maximum
number of steps per epoch, which means that the agent
successfully learns to avoid obstacles. This is precisely
because of the theoretical basis of the strategies used, which
talks about the probability distribution of choosing stocks.
The same conclusion can be drawn by looking at the graph
of the accumulation of rewards through the epoch, which
clearly shows that the agent using softmax search already in
the first 100 epochs recognized the adequate pattern of
action that would give him the greatest reward, which is not
the case with greedy search. Softmax search defined in this
way will be used in the following simulations as an adequate
search strategy. The following simulation is dedicated to
determining the optimal value of the training parameters.

From the attached graph, it can be clearly seen the
impact of the parameters on the training process, where for
higher parameter values, updating the values in the Q table
is faster, i.e. the impact of the knowledge gained is
increased compared to the existing ones. This conclusion

confirms the influence of parameter to update the Q - value.

Although higher parameter values provide faster
algorithm convergence, too large values can result in the
instability of the training process. Since the final training
process will involve a larger number of epochs and a greater
number of steps per epoch, the optimal value of the
parameters will be chosen = 0.5 to ensure safer algorithm
convergence in the long run. The last parameter discussed is
the parameter . Again, 3 simulations with different values

were performed, in which other parameters and
hyperparameters of the algorithm were adjusted based on the
previous conclusions. The simulation results are shown in
the following graph:

Fig. 5. Accumulated agent reward through epochs, final training, Average
number of agent steps through epochs, final training, Q-table at the end of
the training algorithm

From the attached graph it can be concluded that only a
higher parameter value will ensure the convergence of the
algorithm which means that the agent must take into account
the long-term consequences of his current actions, not
relying solely on the current rewards they carry. Influence
parameters in the described way can also be seen from the
formula for updating the Q - table . Based on the
experiments conducted, it is concluded that the optimal
parameter value is 0.9, so it will be used in the final agent

training.

It should be noted that the training parameters are not
very independent and cannot be observed completely
separately. However, the simulations carried out show that
some conclusions can still be drawn and optimal values can
be determined. Regarding the presented simulation results, it
should be noted that some simulations have to be run more
than once, due to the stochastic nature of the algorithm,
convergence is uncertain. Finally, the final process of
training agents in a simulated environment is carried out
with the parameters and hyperparameters selected based on
the previous analysis, but this time the training is extended
to a larger number of epochs and a greater number of steps
per epoch. An overview of the parameters and
hyperparameters of the final training process is given in the

following table:

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on April 18,2023 at 06:37:32 UTC from IEEE Xplore. Restrictions apply.

TABLE II. PARAMETERS AND HYPERPARAMETERS OF THE FINAL

TRAINING PROCESS

search

strategy
softmax

T0 25
∇T 0.95
α 0.5
γ 0.9

The results of the final training process are shown in the

following graphs:

Fig. 6. Parameters of epoch search strategies, Accumulated agent reward
through epochs for different search strategies, The average number of agent
steps through epochs for different search strategies.

Based on the attached graph, it can be concluded that the
training process was successful and convergence was
achieved. It should be noted that several successive
simulations are required to achieve convergence, since the
training process itself is stochastic and convergence is not
guaranteed, which was discussed earlier. The end product of
the training process is actually a Q-table on which the agent
will make a decision on which action to take under
appropriate circumstances. The Q-table results obtained
from the training process are illustrated in the following

graph:

From the attached Q - table it can be seen that the agent
has clearly distinguished which action represents the
optimal solution under certain circumstances, because in
most of the circumstances, one dominant Q - value can be
observed which corresponds to the best course of action. It
should also be noted that certain conditions remain
unexplored. However, this is not dangerous because it is a
harmless situation for the robot or a very dangerous
situation but the robot has learned to avoid it through the

training process. This completes the process of designing
and training the Q learning algorithm and it remains only to
implement and test it in combination with the closedloop
control algorithm, which will be the subject of the next

chapter.

IV. CONCLUSION

This paper discusses the application of artificial
intelligence and machine learning algorithms in the field of
mobile robotics and autonomous driving. One of the most
popular incentive learning algorithms has been implemented,
the Q-learning algorithm, which is based on agent learning
from experience. This thesis first projects a conventional
control algorithm based on a closed loop controller which
ensures that the robot reaches a certain position and
orientation. The controller is implemented and tested in a
simulated environment, where its parameters are adjusted.
The big disadvantage of this algorithm is the inability to
avoid obstacles that the robot encounters on its way to its
destination. To solve this problem, the Q-learning algorithm
has been designed to provide this functionality. The agent
training process was conducted in a simulation environment,
different values of algorithm parameters as well as different
search functions were considered. When the optimal values
of the parameters and the optimal search strategy were
found, the final training of the agent was performed. After
several simulations, the training resulted in convergence and
the final Q-table that will be used in the implementation of
the algorithm.

REFERENCES

[1] B. K. Oleiwi and H. Roth, “Application of Fuzzy Logic for Collision

Avoidance of Mobile Robots in Dynamic-Indoor Environments E 1
oooooo /,” pp. 131–136, 2021.

[2] L. Jouffe, ”Fuzzy inference system learning by reinforcement
methods,” in IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 28, no. 3, pp. 338-355, Aug.
1998, doi: 10.1109/5326.704563.

[3] J. Bai, S. Lian, Z. Liu, K. Wang, and D. Liu, “Deep Learning Based
Robot for Automatically Picking Up Garbage on the Grass,” IEEE
Transactions on Consumer Electronics, vol. 64, no. 3, pp. 382–389,
2018.

[4] Houxiang Zhang, Jianwei Zhang, Guanghua Zong, Wei Wang, and
Rong Liu, “Sky Cleaner 3: a real pneumatic climbing robot for glass-
wall cleaning,” IEEE Robotics & Automation Magazine, vol. 13, no.
1, pp. 32–41, 2006.

[5] Efroni, Yonathan, Gal Dalal, Bruno Scherrer, and Shie Mannor.
”Beyond the one step greedy approach in reinforcement learning.”
arXiv preprint arXiv:1802.03654 (2018).

[6] Tijsma, Arryon D., Madalina M. Drugan, and Marco A. Wiering.
”Comparing exploration strategies for q-learning in random stochastic
mazes.” In 2016 IEEE Symposium Series on Computational
Intelligence (SSCI), pp. 1-8. IEEE, 2016.

[7] Dobrevski, Matej, and Danijel Skocaj. ”Map-less goal-driven
navigation based on reinforcement learning.” 23rd Computer Vision
Winter Workshop. 2018.

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on April 18,2023 at 06:37:32 UTC from IEEE Xplore. Restrictions apply.

