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Abstract—The navigation system is one of the most 

important and crucial concerns in the research of mobile 

robots. Perception, cognition, action, human-robot interaction, 

and control systems are among the difficulties that have been 

resolved. Each navigation system must handle the 

aforementioned common designs to ensure that all duties may 

be completed. The navigation system is built on learning 

techniques that provide the ability to reason in the face of 

environmental uncertainty. However, the design will be 

difficult to build due to a number of factors, including inherent 

uncertainties in the unorganized environment. A more 

expensive design cost, computational resources, and larger 

memory are all required in this case. Navigating an 

autonomous robot in an uncontrolled environment is difficult 

because it necessitates the cooperation of a number of 

subsystems. Mobile robots must be intelligent in order to adapt 

to navigation in unfamiliar environments, such as 

environmental cognition, behavioral decisions, and learning. 

The robot will then navigate around these obstacles without 

collapsing and arrive at a specific destination point. Combining 

two processes, such as environmental mapping and robot 

behaviors, can result in behavior-based navigation. Obstacle 

avoidance, wall following, corridor following, and target 

seeking are some examples. If only one of the two processes is 

used, the system should be used in two ways. When this 

approach is used, two major issues are bound to arise: I the 

combination of two simple behaviors to form a complex one, 

and (ii) the integration of more than two behaviors. Behavior 

induced by multiple concurrent goals can be smoothly blended 

into a dynamic sequence of control action. This study is 

concerned with the automatic navigation of a mobile robot 

from its starting point to its destination point. To solve a few 

sub-problems associated with automatic navigation in an 

uncontrolled environment. Monte Carlo simulation is used to 

evaluate the algorithm’s performance and show under what 

conditions the algorithm performs better and worse. Obtaining 

position mapping to optimize action on mobile robots using a 

reinforcement learning framework. Reinforcement learning 

necessitates a large number of training samples, making it 

difficult to apply directly to real-world mobile robot navigation 

scenarios. To address this issue, the robot is trained in a 

Gazebo platform middleware Robot Operating System (ROS) 

simulation environment, followed by Q-Learning training on 

mobile robots. 

Keywords—navigation, mobile robot, dynamic environment 

I. INTRODUCTION  

Data from robot sensors can be mapped and used by 
robots for navigation and movement planning. In addition, 

data from sensors is also used to estimate the position of the 
robot needed when mapping the surrounding environment. 
All modules that represent one behavior work together [1]. 
The main attention is paid to two approaches to coordination 
mechanisms, namely competitive (arbiter) and cooperative 
(command) fusion. Meanwhile, cooperative coordination 
combines all existing behavior outputs and determines the 
performance of the robot‘s trajectory. Its main feature is the 
hybrid coordination of behavior, between competitive and 
cooperative approaches. 

A mobile robot must have high navigation abilities before 
it can perform other jobs such as carrying items or 
performing mapping activities. This allows the robot to go 
from one location to another without colliding with 
obstacles. When dealing with areas containing static 
impediments, such as industrial locations like warehouses, 
current technology allows mobile robots to work very 
successfully. However, there are areas for further 
development, such as creating a navigation system capable 
of dealing with complex environments, such as those 
encountered by humans. [7]. 

It’s not easy to create algorithms and program robots that 
can move in a static or dynamic environment. Many related 
research fields have been conducted, including the topic of 
navigation systems and several fragments of topics from 
related research fields, such as designing robotic paths with 
the A* algorithm, mapping and localization using mobile 
robots, and real-time collision avoidance on mobile robots 
using deep reinforcement. On the Turtlebot robot platform, 
learning, autonomous navigation using reinforcement 
learning, and transferring learning from simulation to robot 
automobile. The navigation system’s use of non-learning 
algorithms allows the mobile robot to plan and follow a path 
to its destination, but the algorithm isn’t good enough to 
provide local planning skills in an unfamiliar environment, 
where the robot is still stuck in the implementation area. 
minima in the immediate vicinity While the method avoids 
barriers that did not exist in the prior map, it also necessitates 
strong parameter assumptions and is extremely difficult to 
set manually.One of the most powerful methods for solving 
navigating issues in complicated and unknown surroundings 
is machine learning. Unfortunately, earlier research only 
tested at the simulation level, and only a handful were 
evaluated in real navigation settings, or only on robots that 
were particularly supported by ROS. 
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One of the most suitable and widely used RL learning 
methods for autonomous robot applications is RL with the 
Q-Learning algorithm type. This algorithm uses a Q table to 
match discrete states and actions only. Meanwhile, in 
autonomous robots, state size and sensor data are continuous, 
so this becomes impractical. Therefore, to extend the 
QLearning algorithm related to continuous state and action, 
L. Jouffe in [2] combines Q-Learning. Reinforcement 
learning is the optimal control method, when the agent starts 
from an ineffective solution which gradually increases 
according to the knowledge gained to solve successively. 
decision problems [3]. To use reinforcement study, several 
approaches are possible. The first consists of manually 
discrete issues to obtain state and action space; which can be 
used directly by the algorithm using table Q [3]. 

However, it is necessary to pay attention to discretization 
options, so as to allow true learning by providing situations 
and actions that contain understandable rewards. The second 
method consists of working on a continuous state and action 
space using a value function [4]. Indeed, to use 
reinforcement learning, it is necessary to correctly estimate 
the value function. The results obtained show a substantial 
improvement of the robot’s behavior and learning speed. 

The goal of this research is to show how the Q-learning 
algorithm, which is a type of reinforcement learning, may be 
combined with the ROS stack navigation system to give 
robotic automatic navigation skills. Q-Learning is a 
representation of a machine learning algorithm based on a 
driven learning process, in which an agent learns and 
discovers via experience the pattern of action that will 
provide him with the best longterm reward. All of these 
navigation systems are made with ROS, which is modular 
and multithreaded, making it simple to create navigation 
functions and allowing numerous jobs to be accomplished at 
once. 

II. METHOD 

A. Behavior-based Robot (BBR) 

The robot will be controlled directly by a low level 
controller (in the form of a P controller) which functions to 
control the movement of the robot by sending perceptual 
signals (through its sensors) to the high level controller. Then 
the signal becomes a stimulus input that will activate certain 
behaviors (which are coordinated by the behavior 
coordination section). The output of the behavior 
coordination is given to the low level controller for 
controlling the robot. The block diagram of the whole robot 
is shown in the following picture (see Figure 1). 

B. Reinforcement Learning 

Reinforcement learning is a kind of middle ground 
between supervised learning and unsu- pervised learning, 
where the algorithm is in a way told only how well it works, 
not knowing what the exact output of the system should be. 
Thus, an incentive learning system, pop- ularly called an 
agent, must explore and test different solutions and actions to 
find out how to come up with the right answers. The only 
information. 

 

Fig. 1. Behavior based block diagram on mobile robot 

The agent receives from the training algorithm is a 
reward if the action he has taken is favorable, or a penalty if 
it is not. A standardized schematic representation of an 
incentive learning system is shown in the following (Figure 
2). 

 

 

Fig. 2. Interaction diagram between learner and environment 

This type of training is most often encountered in 
sequential decision-making and man- agement problems, 
where it is impossible to provide explicit supervision to the 
training algorithm. The branches in which stimulated 
learning is most often applied are robotics, game theory, 
autonomous driving, finance, speech processing, 
recognition, and many oth- ers. Since one of the algorithms 
of learning with encouragement was used to make this 
thesis, most of this chapter will be dedicated to this type of 
learning, while learning with supervision and learning 
without supervision will remain only briefly described. In 
order to understand the setting of the issue of learning with 
encouragement, it is first necessary to introduce the concept 

of Markov’s decision-making process (MDP). (Figure 2). 

1)Q-Learning: Q-Learning is competitive learning where 
there are agents with the ability to learn to act optimally by 
evaluating the consequences of their actions. States that Q-
Learning is a Q function that tries to estimate the next 
discounted reinforcement signal to take actions from the 
given states. Q-learning is one of the free-learning models in 
RL Engineering. Use of Q-learning to find the optimal value 
of Q-value (action value function). During the learning 
process the Q value will continue to be updated, from the 
old Q value to the new Q value. Any change in the value of 

Q depends on the selection of an action on the service. 
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Q-learning has a way of working by evaluating each 
episode, the process in one episode is said to end if the agent 
has reached the goal state point, and every action will affect 
the Q value. The Q value is used as a ”brain” by the agent 
during the learning process. For more details, here is a 

picture of the Q-Learning algorithm (Figure 3): 

 

Fig. 3. Q Learning Algorithm on Robot 

C. Design of Q-Learning Algorithm 

In order to improve the control system based on the 
closed loop controller, the artificial intelligence algorithm 
described, the Q learning algorithm, will also be designed. 
In this way, the robot, with the help of LIDAR sensors, will 
have information about obstacles in its path and will learn to 
avoid them. The first step in the process of designing a Q-
learning algorithm is to discrete the state and action space 
and define the reward function that the agent will receive for 
the action taken. Only when these things are defined is it 
possible to start the training process, which will eventually 
lead to the convergence of the algorithms and the realization 
of the desired agent performance. 

1)Discretization of state space and action: The agent 
state space is based on measurements from the laser distance 
sensor. Since the laser sensor used measures distances in the 
range 12cm to 3.5m, 3560 around the robot, it is clear that 
this will result in a very large state space that needs to be 
discretized. in some way so that the algorithm can converge. 

2)First, the distance measurement is limited to a 
maximum of 1m and it is chosen that, the LIDAR 

measurement is in the range [−750,750] in relation to the 
movement direction of the robot which is included in the 
state discretization process, which is a valid assumption 
because obstacles are greater than 1m distance from or 
behind robots do not pose a hazard and should not be 
considered. 

State space consists of 4 state variables (x1,x2,x3,x4) 

which are determined based on the obstacle distance from 

the robot and its position. The variables x1 and x2 are 
determined based on the distance of the closest obstacle to 
the robot. The distance marker is denoted by d, the state 

variable declares x1 and x2 is defined as follows: 
 

 
  (1) 

The distance d is calculated separately for the left and 

right sides of the robot, where x1 corresponds to the left and 

x2 to the right. An illustration of the state of the sub-space 

variables x1, and x2. 

The two remaining state variables x3 and x4 are 
determined based on the position of the obstacle relative to 
the robot. Assume that the obstacle to the robot is denoted 
by p, and represents the angle at which the obstacle is 
detected by the 

LIDAR, then let the segments  and s2 : 

, where h indicates the width of the 

LIDAR range, which is 75◦. Then the calculation of the 

variables of the state x3 and x4, as follows: 

 
       (2) 

 

The position p is calculated separately for the left and 

especially for the right side of the robot, where x3 

corresponds to the left and x4 to the right. It should be noted 
that the values of state variables are assigned with 

decreasing priority, which means that if the condition for xi = 

0 is met, it will be higher priority than the condition for xi = 

1, which in that case will not be checked. This makes sense 
because the highest priority will be the obstacles that are 
directly in front of the robot. An illustration of this division 

of the state subspace of variables x3 and x4.The next step is 
to discrete the action space that the agent can take. To make 
the algorithm as simple as possible, we define 3 actions that 
the agent can take: move forward, turn left, and turn right. 
Each of these actions is determined by the linear and angular 

velocity of the robots vx and ωz, as follows: 
 

forward  
turnleft  
turnright 

(3) 

Forward 
 Turnleft 

 turnright 

 (4) 

 

2) Defining the Reward Function: The next step in 
designing the algorithm is to define the reward function 
needed to determine the Q-value and fill in the given Q-
table. The reward function is defined as a combination of 
three different reward functions: 

 

 
       (5) 

 

The reward function r1 is defined to provide a positive 
reward if the agent moves in a straight line, and a small 
negative reward if he turns. The purpose of a small negative 
reward when the agent turns is to give priority to moving 
forward so that the agent’s movement is directed to the 
desired position. 
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                                           (6) 
 

The reward r2 is positive if the weighted cumulative 
distance from the obstacle decreases. The cumulative 
distance is denoted by is the robot’s distance from the 
obstacle at time t and dt-1 is the robot’s distance from the 
obstacle at the time before t . The weight vector W is 
defined so that it has the highest value r2 at a point in the 
robot direction and decreases linearly as the LIDAR 
measurement angle increases symmetrically on both sides. 

The notation W deltad represents the scalar product eWidi 

which returns a single number. r1 cannot be greater than the 
negative reward on the function r2, so the agent has no 
tendency to move towards the hitch. Also, the positive 
reward r2 must outweigh the negative payoff of r1 to give 
the agent priority to avoid hindrances over other actions. 

 
 

                                                                                           (7) 
 

The reward function r3 aims to prevent sudden changes 
in the turning direction of the agent, that is, to make his 
movements as smooth as possible. To assign this function as 
the highest priority, the value of the negative reward must be 
greater than the positive reward of the r2 function. 

The total reward rt will be equal to the sum of the values 
of the previous three reward functions if there is no 
collision, while the very large negative reward is -100 if 
there is a collision. Collision is defined as: 

 

 
                                                                                           (8) 

 
Where Wt is the weight vector which has the smallest 

value at a point in the direction of the robot’s movement and 
increases linearly as the LIDAR measurement angle 
increases symmetrically on both sides, and dt is the distance 
vector representing the LIDAR measurement. Such an 
arrangement gives higher priority to obstacles directly in 
front of the robot, while the distance from adjacent obstacles 
tends to increase to reduce their impact. The distance of 14 

cm is selected for the limit value dcollision. 

3) Policy Determination: To select the best action, the 
QLearning algorithm requires a search strategy to determine 
the actions taken by the agent as a function of the agent’s 

state and environment, which is called Policy (π)). The two 
strategic models that will be used in this study will provide 
the tradeoff compromise that has been mentioned in the 
explanation in Chapter II, namely the greedy -  search and 
the algorithm based on the Boltzmann distribution, which is 
popularly called softmax. Greedy -  search is based on 
selecting the best action using probability 1 -, whereas with 
probability  a random action is chosen, for example: 

 

 
                                                                                           (9) 

The symbol a∗ represents the optimal action, while 
represents random action, and the eps parameter is selected 
in the range 0 to 1. Changing the eps parameter will change 
how the training process takes place, if a random value of r 
is less than the exploration rating  (in the case of this is 1 

the agent will choose the action with the highest Q-value 
in the Q-table, while if the random value of r is greater than 
or equal to the exploration rating (), the agent will choose 
the action at random. In this way, the agent in the early 
stages of training will choose many actions at random, 
which is called the exploration phase. Then over time and as 
the agent’s knowledge increases, the agent will adopt greedy 
behavior in the exploitation phase, i.e. the agent will only 
take action with the highest Q-value in the Q-table [5]. The 
problem with the greedy - search strategy is that all actions 
will be randomly selected with a uniform probability 
distribution at the start, meaning that the probability of 
finding a good action and a bad action is the same, so the 
search strategy for the best action is not optimal due to the 
high value action. .To overcome this, a Boltzmann 
distribution strategy such as softmax is used. 

Softmax’s search strategy is based on selecting an action 
based on probability considering the Q-value of the 
actionstate pair. The probability of selecting an action is 

proportional to  , which means an agent in the state s will 

choose an action a with a large probability [6]: 

 
                                                                                          (10) 
 

The T parameter determines how random the action will 

be. If the value of T is large, the set of actions will be 
randomly selected with proportional probability. whereas at 

lower values T the action set is selected with a higher value 

of Q. If T is zero, the action with the highest Q value will 
continue to be selected. In the early stages of training the 

value of T is chosen higher, which will eventually drop to 
zero as the agent gains knowledge [6]. 

TABLE I.  MAPPING OF ACTION SPACE AND STATE ON Q-TABLE 

 

III. RESULT AND DISCUSSION 

A. Algorithm of Q-Learning 

Define abbreviations and acronyms the first time they are 
uFor the learning algorithm parameter Q itself, the values 
α=0.3 and γ= 0.9 were chosen to ensure slower agent 
training, as well as to account for the long-term effects of the 
current action. The training process is carried out in 200 
epochs, where the maximum number of agent actions during 
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one epoch is 300. The simulation results that aim to compare 
search strategies are shown in the following graph: 

 

Fig. 4. Average number of agent steps through epochs for a parameter 
,Accumulated agent reward through epochs for a parameter, Accumulated 
agent reward through epochs for a parameter,Average number of agent 
steps through epochs for a parameter 

The accumulated rewards and the average number of 
agents steps are averaged over 10 epochs to create the 
smoothest possible graph, emphasizing their trend in 
relation to the value at each less important point. Based on 
the attached graph, it can be clearly concluded that the 
search for softmax is a better choice in certain problems 
because it successfully converges towards the maximum 
number of steps per epoch, which means that the agent 
successfully learns to avoid obstacles. This is precisely 
because of the theoretical basis of the strategies used, which 
talks about the probability distribution of choosing stocks. 
The same conclusion can be drawn by looking at the graph 
of the accumulation of rewards through the epoch, which 
clearly shows that the agent using softmax search already in 
the first 100 epochs recognized the adequate pattern of 
action that would give him the greatest reward, which is not 
the case with greedy search. Softmax search defined in this 
way will be used in the following simulations as an adequate 
search strategy. The following simulation is dedicated to 
determining the optimal value of the training parameters. 

From the attached graph, it can be clearly seen the 
impact of the parameters on the training process, where for 
higher parameter values, updating the values in the Q table 
is faster, i.e. the impact of the knowledge gained is 
increased compared to the existing ones. This conclusion 

confirms the influence of parameter to update the Q - value. 

Although higher parameter values provide faster 
algorithm convergence, too large values can result in the 
instability of the training process. Since the final training 
process will involve a larger number of epochs and a greater 
number of steps per epoch, the optimal value of the 
parameters will be chosen = 0.5 to ensure safer algorithm 
convergence in the long run. The last parameter discussed is 
the parameter . Again, 3 simulations with different values 

were performed, in which other parameters and 
hyperparameters of the algorithm were adjusted based on the 
previous conclusions. The simulation results are shown in 
the following graph: 

 

Fig. 5. Accumulated agent reward through epochs, final training, Average 
number of agent steps through epochs, final training, Q-table at the end of 
the training algorithm 

From the attached graph it can be concluded that only a 
higher parameter value will ensure the convergence of the 
algorithm which means that the agent must take into account 
the long-term consequences of his current actions, not 
relying solely on the current rewards they carry. Influence 
parameters in the described way can also be seen from the 
formula for updating the Q - table . Based on the 
experiments conducted, it is concluded that the optimal 
parameter value is 0.9, so it will be used in the final agent 

training. 

It should be noted that the training parameters are not 
very independent and cannot be observed completely 
separately. However, the simulations carried out show that 
some conclusions can still be drawn and optimal values can 
be determined. Regarding the presented simulation results, it 
should be noted that some simulations have to be run more 
than once, due to the stochastic nature of the algorithm, 
convergence is uncertain. Finally, the final process of 
training agents in a simulated environment is carried out 
with the parameters and hyperparameters selected based on 
the previous analysis, but this time the training is extended 
to a larger number of epochs and a greater number of steps 
per epoch. An overview of the parameters and 
hyperparameters of the final training process is given in the 

following table: 
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TABLE II.  PARAMETERS AND HYPERPARAMETERS OF THE FINAL 

TRAINING PROCESS 

search 

strategy 
softmax 

T0 25 
∇T 0.95 
α 0.5 
γ 0.9 

 
The results of the final training process are shown in the 

following graphs: 

 

Fig. 6. Parameters of epoch search strategies, Accumulated agent reward 
through epochs for different search strategies, The average number of agent 
steps through epochs for different search strategies. 

Based on the attached graph, it can be concluded that the 
training process was successful and convergence was 
achieved. It should be noted that several successive 
simulations are required to achieve convergence, since the 
training process itself is stochastic and convergence is not 
guaranteed, which was discussed earlier. The end product of 
the training process is actually a Q-table on which the agent 
will make a decision on which action to take under 
appropriate circumstances. The Q-table results obtained 
from the training process are illustrated in the following 

graph: 

From the attached Q - table it can be seen that the agent 
has clearly distinguished which action represents the 
optimal solution under certain circumstances, because in 
most of the circumstances, one dominant Q - value can be 
observed which corresponds to the best course of action. It 
should also be noted that certain conditions remain 
unexplored. However, this is not dangerous because it is a 
harmless situation for the robot or a very dangerous 
situation but the robot has learned to avoid it through the 

training process. This completes the process of designing 
and training the Q learning algorithm and it remains only to 
implement and test it in combination with the closedloop 
control algorithm, which will be the subject of the next 

chapter. 

IV. CONCLUSION 

This paper discusses the application of artificial 
intelligence and machine learning algorithms in the field of 
mobile robotics and autonomous driving. One of the most 
popular incentive learning algorithms has been implemented, 
the Q-learning algorithm, which is based on agent learning 
from experience. This thesis first projects a conventional 
control algorithm based on a closed loop controller which 
ensures that the robot reaches a certain position and 
orientation. The controller is implemented and tested in a 
simulated environment, where its parameters are adjusted. 
The big disadvantage of this algorithm is the inability to 
avoid obstacles that the robot encounters on its way to its 
destination. To solve this problem, the Q-learning algorithm 
has been designed to provide this functionality. The agent 
training process was conducted in a simulation environment, 
different values of algorithm parameters as well as different 
search functions were considered. When the optimal values 
of the parameters and the optimal search strategy were 
found, the final training of the agent was performed. After 
several simulations, the training resulted in convergence and 
the final Q-table that will be used in the implementation of 
the algorithm. 
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