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gBSTRACT =This paper proposes a novel MDP framework to deal with the accuracy of the motoreycle driving model.
It proposes a weighted and unweighted Dynamical-Discretized Reward Field (DDRF) as a major contribution on
modeling motorcycle maneuver in mixed traffic conditions. Other contributions of this work are the integration of a
motorcyele trajectory maneuver model in the state transition function, derivation of probability functions, area of
awareness (AoA) and its sectorization to perceive vehicles inside the AoA, which is used to determine actions. We
conducted some simulations to evaluate the performance of the proposed model by comparing the data from the
simulations with real data. In this swdy, we use 100 simulation data on motorcycle maneuvering, which consisted of
two different scenarios, i.e., 50 data of motorcycle maneuvering to avoid other motorcyeles and 50 data of motorcycle
maneuvering to avoid cars. We adjusted the simulation setting to the real situation and measured the per formance of
the proposed model using root mean square error (RMSE). In general, the proposed method can properly model the
maneuver of motorcycles in heterogeneous traffic with an RMSE value of around 0.74 meters. This model performs
twice as good as an existing car-following model. Furthermore, the proposed reward function performs around 4~6%
better than the regd function in previous studies.
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NOMENCLATURE
the lane disciplines. Many rescarchers agree that the
AoA - area of awareness study of modeling motorcycle behavior needs to be
. . . ) improved to find the proper model that can represent
DDRF  :dynamical-discretized reward fiekd closely the real situation (Mardiati er al., 2014).
MDP  :markov decision process In the current literatures, the studies on motorcycle
™ maneuvering have been investigated using a variety of

methods for various purposes. For example, Hausser and
Saccon investigate the optimal maneuvering trajectory
for decreasing lap time in motorcycle racing by using
function of frame flexibility, suspension, and tire (Hauser
and Saccon, 2006). Lemonakis proposed an optimal

I.LINTRODUCTION

Motorcycles are the most common mode of
transportation in developing countries, such as India,
Vietnam, Indonesia, etc. In developing countries . , . . .
’ > . maneuvering trajectory model in curve sectionroad using
motorcycles are very dominant because they provide . = o - )
L - optimal regression on speed and radius of road's curve
practicality, convenience and low cost. However, h
i ; (Lemonakis et al., 2014).
motorcycles produce an erratic and unpredictable

. . . While Hauser and Lemonakis focused their studies on
maneuver pattern since the riders usually do not follow

high performance motorcycle, several researchers

f()cusecm] modeling motorcycle behavior in urban

*Corresponding author. e-mail: r_mardiati@uinsgd.ac id traffic (EINESSSSENE. Lan S5, 2010; Babu 5SS,
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2014). Lan er al. (2010) studied mixed traffic model
which comprises of motorcycle and car, where Cellular
Automaton (CA) is used for modeling an erratic behavior
of motorcycle. Based on their study, CA offers not only
a robust technique to model heterogeneous traffic,
especially in describing object movement but also
accommodate internal and external decision factors.
Although providing this advantage, CA are limited in
modeling rider behavior which is very unpredictable. a

To deal with this problem, Minh proposed a
maneuverability model framework for motorcycle in
queues at signalized intersection using basic of lane
changing model (Minh et al., 2012). The model
performance was assessed using data observation which
are collected from video estimation software GAUSS in
Hanoi city, Vietnam. While, Babu et al. studied modeling
motorcycle behavior using social force model to describe
the lateral movement and intelligent driver model to
describe the longitudinal model in mixed traffic
condition consisting of many different types of vehicles.
In this model, the neighbor vehicles were identified using
a perception line logic to be used for determining the
direct lead vehicle, front left and front right vehicles
(Babu et al., 2014). M()delina:ehewi()r of driver was
also developed by Lee using artificial neural network
learning algorithm to determine a collision risk warning
system according to the driving characteristic of the
driver (Lee er al., 2018). Collision risk warning model
based on lane changing recognition has also been studied
by Park using Hidden Markov Model to handle the
uncertainty data (Park et al., 2019).

Lately, the multi-agent method provides suitable
modeling  capability for dynamic and complex
heterogeneous traffic systems (Wang er al., 2013). Based
on some literatures, the multi-agent system offers highly
accurate modeling of heterogeneous traffic (Bazghandi
and Pouyan, 2011; Mounir et al., 2013). In multi-agent-
based traffic modeling, each vehicle acts as an agent with
the capability to make decisions according to external
and internal conditions.

One popular decision-making process in the agent-
based model is the Markov Decision Process (MDP).
Several works have been done in modeling \«a;le
behavior (four-wheel vehicle) using MDP (Wei et al.,
2011; Brechtel et al., 2011; Shimosaka et al., 2015).
Based on these literatures MDP can describe agent's
behavior by modeling it as a state transition, where the
executed action in each step triggers the transition of the
states. MDP also has a reward for each possible action,
which facilitates a selection of an optimal decision
(optimal policy). Unfortunately, the previous study only
uses MDP for modeling four-wheel vehicle behavior
where the traffic condition is homogenous. Since the
two-wheel vehicle (motorcycle) is also important to be
modeled especially in urban traffic, MDP was potential
to be implemented in modeling motorcycle behavior.

Modeling motorcycle maneuver in urban traffic areais
challenging, since many factors influence the maneuver,
such as different type of vehicles, the presence of
neighbor vehicles, and the condition of the surrounding
environment. The existing works described above
unfortunately did lcompl‘chcnsivcly accommodates
these factors (Minh et al., 2012; Lan et al., 2010; Babu er
al., 2014). The proposed model in this paper tries to fill
this gap. This work presents modeling motorcycle
maneuver in urban scenarios where the motorcycles
move freely regardless the lane disciplines and choose
the action based on the presence of neighboring vehicles.

The method is based on the MDP with improvements
in the aspects of probability model, reward function, and
weighted rewards function. The probability model is
based on states of neighbor vehicles, where the scenario
is detailed thoroughly. The reward function is described
as a discretized reward field of the road grid based on the
state of other vehicles, and finally the weighted reward
function is to accommodate a preferable maneuver
direction (either left or right). Some weighting functions
are investigated, which are Gaussian, Hamming, and
Bartlett to represent an aggressive, moderate and safe
m;auver behavior, respectively.

The paper is organized as follows. Section 1 gives a
general introduction, while Section 2 described the
problem formulation. In Section 3 describes the proposed
method for modeling motorcycles maneuver using MDP.
Moreover, Section 4 presents the process of data
ﬂcquisiti()nmneemwhile the simulation and model
evaluation are described in Section 5. Finally, Section 6
presents the conclusion and future works.

2. PROBLEM FORMULATION

We consider heterogeneous traffic situation with the
case study of the traffic in Bandung city, Indonesia. The
traffic situation consists of an ego vehicle which is a
motorcycle surrounded by neighboring vehicles of
various kinds such as motorcycles or cars in one way of
two-lane road. The maneuver of ego wvehicle and
surrounding vehicles are modeled using MDP with ten
states and seven actions. The states are defined in terms
of position, velocity, and angle, while actions are defined
in terms of maneuver and acceleration. More detailed
explanation will be provided in Subsection 3.1.

Within the framework of MDP, this work proposes a
discretized reward function and its weighted version. The
simulations are constructed using the framework of
proposed MDP for motorcycle maneuver in mixed traffic
and will be carried out and comparison with real world
data. The research objective is to investigate how
parameter values in the discretized aighted function and
its weighted version influence the accuracy of the
simulated vehicle maneuver compared with the real data.
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3. THE PROPOSED MDP FOR MODELING OF
MOTORCYCLE MANEUVER

MDP is a mathematical formulation for decision and
control problem when encountering uncertain system
behavior (Bellman, 1957). Furthermore, MDP can
describe the stochastic behavior of a system, such as
m;meuvm:eh;wi()r in traffic. Maneuver behavior in

MDP is expressed as a state-transition problem where a

rider selects certain acti()nsith a goal in mind

(Shimosaka et al., 2015). The block diagram of MDP is

shown in Figure 1. Based on its definition, MDP has the

following five properties (Howard, 1960).

1. s a finite set of states.

2. A is a finite set of actions (alternatively, 4 is the
finite set of actions available from state s).

3. P(s',As) = P(s'|A,s) is the probability that action
A in state s at time ¢ will lead to state s’ at time ¢ +
1.

4. Ry(s,s") is the immediate reward (or expected
immediate reward) received after transitioning from
state ao state §', due to action A.

5. y € (0,1] is the discount factor, which represents the
difference in importance of future rewards and
present rewards.

| A |

L& |

Figure 1. Block diagram system of MDP.

MDPs end goal is to find an optimal policy 7™ that will
maximize the cumulative function of the random
rewards, typically the expected discounted sum over a
potentially infinite horizon:

i TLRQE(Sc,S:H)‘ (D
where we choose a, = m(s,).

Suppose V7™ (s) predicts the cumulative reward when
an agent is in the state s with policy m, then V™(s) is

computed by

V(i) = E Xioo VR (s, m(Sy, Seaa)lso = 1. (2)

3.1. State B8 Action

The state of the ego vehicle is a function of the position
(x,y), velocity v, and steering angle 8 which is defined
by

s =[x,y,v,0]. (3
An action of motorcycle that will be executed is a

function of maneuver m € [nomaneuver,
right maneuver, left maneuver] and acceleration

a € [constant, acceleration, deceleration] which
is defined as
A=[mal. 4

There are ten states and seven actions to describe the
behavior of motorcycles, as mentioned in Table 1 and
Table 2.

Table 1. Set of states.

States Definition

Sp Vehicle with no speed (stop)
Vehicle with speed v = vpyq and steering

51

straight
53 Vehicle with speed v, = v, ;, and steering right
53 Vehicle with speed v, = v, and steering left
s Veh_icle with speed vy > vy 4y and steering
4 straight
Sg Vehicle with speed v, > v, and steering right
Sg Vehicle with speed vy > v, and steering left
s Veh_icle with speed vy < vy and steering
straight
Sg Vehicle with speed vy < v and steering right
Sg Vehicle with speed v, < 14 and steering left

Table 2. Set of actions.

Action Definition
Al Fixed velocity with no maneuver
A2 Increases speed with no maneuver
A3 Decreases speed with no maneuver
A4 Fixed velocity with right maneuver
A5 Increases speed with right maneuver
A6 Fixed velocity with left maneuver
A7 Increases speed with left maneuver

3.2. Area of Awareness

In this work, we identify a neighbor vehicle using Area
of Awareness (AoA). AoA is a virtual area to assess
neighbor vehicle which is assumed as obstacles (leading
vehicle), room for maneuvers (vehicle in right front or
left front), and threats (following vehicle). This
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simplified model depicts the AoA as a circular area with
radius 7, as shown in Figtmz(zl). The radius of r, will
depend on the velocity v, of the ego vehicle as defined
by

o = kyvg, (5)

where k,. is a scaling factor that indicates the awareness
of rider to the surrounding environment.

Moving
y direction

!

i

(a) (b)

Figure 2. (a) AoA areaof vehicle under consideration, (b)
Iustration of AoA division into eight sectors.

After determining the radius of the AoA, the
sectorization stage determines which vehicles are inside
the AoA. The AoA sectorization consists of eight sectors
as shown in Figure 2(b), which are then categorized as an
obstacle, room for maneuvers, and threats.

We can determine the vehicles inside the AoA and
categorize lheseicles based on the Ao A sectorization
by determining the distance and angle between the ego
vehicle and the neighboring vehicle using

2 g
Tap = ((xﬁ. =) = (Vg = ¥a) ) ; (©)
and
-1 (VBT
f; = tan (x—ﬁ!_xa) . (T)

where 7, is the distance of motorcycle and other vehicle,
(xa, ¥g) 1s the position of ego vehicle, and {xm,yﬁ!) is
the position of vehicle ;. The vehicle f; is inside AoA
if the ryg, < 1y.

3.3. Probability Function

The probability function is used to calculate the
probability value of each action shown in Table 2. This
probability function is derived based on the logical
thinking of riders when they make a movement that is
described in the flowchart diagram as shown in Figure 3.
In this figure, there are six parameters that influence the
motorcycle movements, namely the absence of leading
vehicle, the speed of leading vehicle, the speed of ego
vehicle, room or space of maneuver, the safer space or
room for maneuver, and threat or the absence of another

vehicle behind ego vehicle. These six parameters were

represented by probability functions (P1,P2,...,P6),

respectively. The derivation of P1, P2, ..., P6 were done

in previous study (Mardiati er al., 2018) and rewritten in

the following for completeness.

1. The probability of a leading vehicle (obstacle) (P1),
which is denoted as

p=f
-1

where daﬁ-lis the distance of vehicle a (motorcycle)
and B (leading vehicle), d is the critical distance of
vehicle @ to make a decision of maneuver or stop,
and k, is a constant value.

The probability of a slower leading vehicle (P2),
which is denoted as

1(%31—“:)‘}{'0,- da.ﬁ‘l >d,

fordgp <d./ ®)

[

= %{sign(va - ".B‘l) + 1), 9)

where, 1, and vp, are the speed of vehicle a and By,
respectively. The value of P2 are O and 1.
3. The probability of motorcycle occupying a
comfortable speed v, (P3), which is denoted as
= (sign(vy — v) + 1. (10)
The possible values for P3 are O and 1.

4. The probability of room to maneuver (P4), which is
denoted as

P4 = max(Py,, Py, ), (1D
& (dﬂﬂz'dt‘a]_k

where Py, =&e™ w 2 s the probability

of making a left maneuver, and Py, =

1s the pmbaity of making a
right mancuver. While, dap, is the distanf of
motorcycle a and left side vehicle §,,
distance of motorcycle a and right side vehicle S,
dg, is the critical distance of motorcycle a to make a
decision of left maneuver, d

d, =dg
ek3—3—( ar.BW LJ']—’ﬁz)"r

dyg, is the

¢, 18 the critical distance
of motorcycle a to make a decision of right
maneuver, W = dgp, + dog,, and ky, k3, § are the
constant.

5. The probability that right maneuvering 1s safer than
left maneuvering (P5), which is denoted as

P5 = argmax(Py,, Pg,) — 1. (12)

The probability of a threat (P6), which is denoted as
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(1) Increases
speed & no
maneuver (A2)

Get to the
destination?

(2) Fixed
velocity & no
maneuver (Al)

Read internal

(3) Increases
and external

speed & no

state
maneuver [A2)

(4) Fixed
velocity & no
maneuver (A1)

(5) Decreases
speed & no
maneuver (A3)

(13} Increases
speed & left
maneuver (A7)

Is there a
threat? (P6

|7) Decreases
speed & no
maneuver (A3)

(6) Decreases
speed & no
maneuver [A3)

(11} Increases
speed & right
maneuver [A5)

Istherea
threat? (PG

(8) Decreases
speed & no
maneuver [A3)

(14) Fixed
velocity & left
maneuver (AB)

Istherea
threat? [P6

(12) Fixed velocity
& right maneuver,

(9) Decreases
speed & no
maneuver (A3)

(10) Decreases
speed & no
maneuver (A3)

Figure 3. The logic of a rider's decision-making process.
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P6 = g Mt (13)
where d, =min(d, .d,,, . dy,). and d, is the
distance of motorcycle @ and vehicle f;. Note that
vehicle §; is another vehicle behind motorcycle.

After determining the probability function of
P1,P2Z, ..., P6, the next step 1s to calculate the probability
function of each action. Based on Figure 3, there are
fourteen output blocks of actions that refer to actions
Al1,A2,--+,A7 which are described in Subsection 3.1. As
anexample, to find the probability function for action A1
(fixed velocity with no maneuver) can be obtained from
two scenarios as follows (refer to Figure 3).

1. There is no obstacle or leading vehicle in front, and
the rider has reached a comfortable speed (output

block number 2).

2. There is an obstacle or leading vehicle in front, the
speed of the leading vehicle is faster than the ego
vehicle, and the rider has reached a comfortable
speed (output block number 4).

In the two scenarios above, each situation represents
independent events and produce the same action which is
action A1. Therefore, we can obtain the probability of
action Al for each scenario by multiplying the
probabilities of parameters that influenced the action
using Equations (8)-(13). Finally, the final probability
function for action A1 is derived by adding the
probability of action A1 in both scenarios above. By
using the same derivation process, we can find the
probability function for all actions as follows.

P(A1) = (1 - e aldap, ) %(sigﬂ W —vg) + 1) +

;lg-h(dum“i=:' (1 - sign (va — vg) + 1) (sign (ve— (14)
Ug) + 1)
P(A2) = (1 — e Faldan ) (1 - %(sigﬁ Ww.—v)+1) )+
(15)

ek dap, ~de) (1 ~2(sign (va—vg) + 1)) (1 -

$Gsign (v, = v) +1))

P(A3) = e"‘*(dﬂﬁl'd=)_—: (sig‘n (T)R - vﬁ) + 1)[1 - max(PeU -DeR) +

max(Py,, Py, )|e-et (16)

P(44) = e™*1(8em =09 (sign (ve — vg) + 1) (sign (ve — va) +
1) max(Py,, P, ) (17)

P(A5) = e™*:(4en ) (sign (v, — vg) + 1) (1 - L(sign (v, -
ve) + 1)) max(Ps,, Po,) (argmax(Py,, Po,) — 1) (1 s

e~kady)

P(AR) = e'*l(“"fl'd‘}i(sign (DR - Dﬁ) +1) (%(sign (v, — v, )+
(19)

(20

1)) max(PgU PQR)(l — (arg max(PgL, ng] - 1)) (1 — e Ferx)
P(A7) = e~Hldes 4 (sign (v, — vy) +1) (1 ~ X (sign (v, -
V) + 1)) max(Pg,, Pg, ) (1 — (argmax(Pg,, Py, ) —

1)) (1 — e~*xlx)

3.4. Reward Function

The reward function evaluates the action taken by the
vehicle agent. In general, the reward function calculates
the value reward of ego vehicle if it performs a certain
action. In this research, we propose a reward function
which is modeled on the road grid to describe the reward
or punishment that is given to the ego vehicle if it selects
that grid. The reward model called the dynamical
discretized reward field (DDRF). UsinBIDRF, each grid
on the road has its own reward value which depends on
the steering angle and distance of the ego vehicle to
surrounding grid, and the movement of the vehicle agent,
which is denoted as

cosby ]
Ry = = ssign (Vg —ya). @D
J(xg‘xa) +H(yg-va)
where R,‘}q‘yq is the reward value on the grid {x ,yg),

(xa,ya) 1s the motorcycle's position, and 6‘9 denotes the
angle of motorcycle towards the grid {xg, yg).

Accumulative DDRF of ego vehicle o

RR total a
x —
2% ny.yy

Individual DDRF of vehicle 3,

Individual DDRF of vehicle £,

Figure 4. Ilustration of individual and accumulative

DDRF.

Each vehicle has its own reward field, called as an
individual DDRF as shown in Figure 4. In Figure 4, we
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calculate each grid in the individual DDRF using (21),
assuming that the road is empty. Since other vehicles
mfluence the vehicle movement, the final reward field
used for each vehicle is produced by accumulating the
individual DDRF of neighboring vehicles. In the
accumulative DDRF, the value reward of each grid is
defined as a superposition function of each individual
DDRF, which is expressed by

Rt = Ry o — (|RE,, |+ -+ R, )
= R 5, — Lz |R€f!g~"’g|‘ 29

a
where Rx”;,‘: denotes the reward value of the grid

{xg, yg) in the accumulative DDRF and Riqu denotes

the reward value of the vehicle f§; on grid {xg, yy).

Most countries, including Indonesia, have traffic rules
that encourage riders to mzmm:r in a specific direction,
for example maneuvering to the right lane is favorable to
maneuvering to the left lane. We can embed this feature
by using weighted function. In this paper, we propose
three weighted reward functions, ie., Gaussian,
Hamming, and Bartlett as shown in (23), (24), and (25)
respectively.  These  functions  have  different
characteristics in terms of maximum amplitude to the
previous amplitude ratio (k).

(xq w?

R?gﬂ{a(f;') = Iq,yq mexp (23)
RE v, (fa) = R¥,y, (0 56 — 0.46 cosm) (24)
Rx,», (n_nb)n<nb

aYg
Regy (1) = " (25)
qu,yq —2,n>mn
04 .
03 i : : | ¥ Bartlett
§ 0.25 T ?
EE 02 [ I I
< oast b . .
01
PP I R (R N S : L ]
D!? ? g ! s 6 7 ! ] $

a3

Figure 5. Comparison of three weighted reward functions
(Gaussian, Hamming, Bartlett).

In (23), the mean of distribution p is taken from the actual
abscissa of the ego vehicle added by an offset, while the
variance o2 is taken from the width of the road. In

Hamming weighting, M is the width of the road, while ny
is the abscissa of the ego vehicle. Finally, in Bartlett
weighting, n, is the abscissa of the ego vehicle added by
a small offset. Figure 5 illustrates these three weighted
reward functions for a road width of 10 meters with the
position of motorcycle at ny = 5 and an offset of 1 meter.
As seen in Figure 5, we observe that the Gaussian
weighted function has a greater weighted value than
Hamming and Bartlett, as shown inn = 5 and n = 6.

3.5. State Transition Model

After calculating the probability and reward values, we
use (2) to select the optimal action. After gcncrm; the
action, the state transition model is used to move from the
current state to the next state. In the state transition
model, the trajectory of the motorcycle's maneuver is
obtamed from collected data by observation. The
transition model for the ego-vehicle is divided into two
conditions, i.e., doing a maneuver and no maneuver. The
set of states (coordinate velocity and orientation) at time
t + 1 for doing a maneuver is given by

¥ X vt+ atz 1— w
2
Nt + (vt +- at2 (26)
a' g at
L Ad
and no maneuver is given by
x' X 0
r 1 .2
YI=1[+ (ve+3ac?) @7
v v at
g’ 6 0
where [x,y,v, S]T denotes the current state,

[x',¥', v, 8']" denotes the next state, @ is an acceleration,
and AB = a,(x; —x0) + az(xd —x3) + az(xf — x8) +
as(x{ — x3) denotes the displacement vector. AB was
derived based on trajectory model which has been done
in (Mardiati et al., 2019).

4. DATA ACQUISITION

4.1. Observation Area

We collected the data using a video recorder set up on the
high position (8.2 meters above the ground with a 74°
elevated angle) near the targeted road as can be seen in
Figure 7. The video captured vehicle movements over 73
meters. We conducted the survey from 06:30 a.m. to
08:30 a.m. local time (Bau@ city, Indonesia) which is
considered as rush hours. An example of the collected
data is shown in Figure 6.
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Figure 6. Data collection: (a) motorcycle maneuvering
other motorcycle, (b) motorcycle maneuvering a car.

4.2, Data Analysis

We used transformation matrix coordinates to convert
video screen coordinates into roadway coordinates. We
derived the formula of the transformation matrix
coordinates based on the illustration in Figure 7. The
derivation of these formula was done in previous study
(Mardiati et al., 2019).

-d’ - d >

Figure 7. Illustration of the picture in pixels, the picture
on the perpendicular side, and the picture on the actual
side.

It is necessary to transform the captured video coordinate
to real-world coordinate. Using the geometry analysis of
Figure 7, the transformation of video coordinate to real-
world coordinate is given as (Mardiati ef al., 2017) :

2 0lp o
b x r
" o = [0 kJ[y]'E“(z
RIAE e
3 1 0]« r
0 [0 kz][y]'lﬂzz
a

where (x,y) is pixel coordinate, (x",¥") denotes real-
world coordinate, r is the length of €D in Figure 7, 5 is
the width of the road, a and b denotes the spatial vertical
and horizontal resolution of the video respectively, and
the parameters k4 and k; are calculated as:

= AR
-1
sln[tan goHtan

_1AP]
sln[l:an 7l
_14F

AF
1 —_—
CF 2 FH

ky (29

_1AB 1A

kl _ slnllau—tan ﬁ—tan TF (30)
T ~1AB L on-1AF an-1AE
SII'I[lElI'I BE.:-Fl.ill'l F tan PJ]

We used observations data from 100 motorcycle

maneuvers to avoid other motorcycles or cars to validate
our proposed model.

5. SIMULATION AND ANALYSIS

In this section, we present some simulation results to
investigate the effect of the proposed model to the
accuracy of the trajectory model. In addition, simulations
have also been done to compare our MDP model with
other models. We evaluate the accuracy using root mean
square error (RMSE), denoted as:

RMSE = |53 = %) + (v — 302 31)

where N is the amount of data, (x;,¥;) is the coordinate
of the actual trajectory, and (¥,,%;) is the coordinate of
the simulation trajectory.

5.1. Simulations to Compare
[E@veighted Reward Function
In this section, we conduct a series of simulations to
determine the effect of the proposed reward function on
the accuracy of the trajectory of the maneuvers that our
model produced. Simulations were performed for both
mixed data (100 observation data of motorcycle
maneuvers) and specific data (50 observation data of
motorcycle avoid another motorcycle and motorcycle
avoid a car) using unweighted and weighted rewards.
Simulations were conducted to investigate the
performance ()f()utmp()sed model with unweighted and
weighted reward. The results are shown in Figure 8.
Figure 8 shows that the weighted reward function
performs better than the unweighted reward function.
Specifically, based on Figure 8, Hamming and Bartlett
weighting functions show better performance for three
different data cases.

the Weighted and

0.775 : :
—— Without weighting
0.771 —s— Gaussian
0.765} Hamming
= —=— Bartleft
s 078
@
]
Y
* -
074 / :
0.735F—4 .

0 02 0.4 08 0.8 1
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Figure 8. Comparison of unweighted and weighted
reward functions for reward depth level 1 and k, = 1
using: (a) mixed data consists of 100 simulation data, (b)
specific data consists of 50 simulation data of a
motorcycle maneuvering around a car, and (¢) specific
data consists of 50 simulation data of a motorcycle
maneuvering around another motorcycle.
5.2. Simulations to Compare the Proposed Model with
Other Model
In this section, we compare the proposed MDP model
with two other approaches, namely the car-following
model that Chang and Chon used (Chang and Chon,
2015) and the reward function model that Brechtel used
(Brechtel et al., 2011).
Figure 9 shows the comparison between the car-
following model and our proposed model. This
comparison shows that our proposed method is two@es
better than the car-following method. This is due to the
simplicity of the car-following model, compared to the
MDP method that accommodates stochastic and complex
environments. Apart from that, the car-following method
also lacks a reward function and produces actions only
for that moment without considering the next few events.
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Meanwhile, Figure 10 gws the comparison of the
proposed model with the reward function that Brechtel
(2011) used in ther work. Figure 10 showed the
comparison of Brechtel reward function with the
weighting reward functions in this study (Gaussian,
Hamming, and Bartlett). The simulation result shows that
the proposed reward function performs 4-6% better on
average than Brechtel's reward function.
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Figure 9. Comparison gthc proposed model compared
to the basic car-following model with (a) reward depth
level 1, (b) reward depth level 2, and (c) reward depth
level 3.
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Figure 10. Comparison of the proposed reward model to
the Bretchel reward function in: (a) reward depth level 1,
(b) reward depth level 2, and (c¢) reward depth level 3.

6. CONCLUSION

This paper presented a novel maneuvering model of
motorcycle for an urban road scenario using MDP with
Dynamical-Discretized Reward Function. Compared

with prior models that used a basic reward function
model, our proposed reward model performs better in
describing motorcycle behavior in mixed traffic
corfitions.

In general, our proposed method can properly model
the behavior of motoreycles in heterogeneous traffic with
a root mean square error (RMSE) value of around 0.74
meters, based on a comp;lrison' the simulation results
with actual data. This result is twice as good as the car-
following model. Furthermore, the re function
(DDRF) proposed in this study performed around 4-6%
better than the reward function in previous studies.

The simulation results lead to a number of specific
conclusions. Firstly, the RMSE of a motorcycle
maneuvering around another motorcycle is greater than
that of a motorcycle maneuvering around a car, which
shows that modeling motorcycles maneuvering around
another motorcycle is more difficult than modeling a
motorcycle maneuvering around a car. This is due to the
motorcycles’ highly dynamic movements. Moreover,
generally, the proposed method performs better at the
reward depth levels 1 and 2 than at reward depth level 3,
which shows that motorists tend not to think about the
possibility of moving far ahead. Furthermore, the effect
of (AoA) on the proposed method shows that motorists
have moderate AoA coverage while riding. In addition,
the discount factors performed well at small range values;
and adding a weighting function to the reward model led
to better performance, especially for the Hamming and
Bartlett weighting function.

Furthermore, the results of this study provide further
research opportunities to be implemented in the behavior
of four-wheeled riders, as well as opportunities to
develop the functions of AoA, DDRF, probability to
improve model perf()rce. This proposed model also
could be extended to Partially Observable MDPs
(POMDP) which able to cope with uncertain and
incomplete perception.
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