
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Rubik’s Cube Solution Method Using Real-Time
Tracking Cube Approach

1st Teguh Nurhadi Suharsono
Faculty of Engineering

Universitas Sangga Buana
Bandung, Indonesia

teguh.nurhadi@usbypkp.ac.id

2nd Abdul Rozak
Faculty of Information Technology &

Digital
Institut Digital Ekonomi LPKIA

Bandung, Indonesia
abdulrzk44@gmail.com

3rd Rina Mardiati
Department of Electrical Engineering

UIN Sunan Gubung Djati Bandung
Bandung, Indonesia

r_mardiati@uinsgd.ac.id

Abstract— Rubik's solution method is a way to solve Rubik's
by using predetermined rotation steps, now there are many
methods of Rubik's solution that have been created and among
them there is a trend to create a Rubik's solution method with
the most optimal steps starting in 1981 Morwen Thistlewaite
created a Rubik's solution algorithm which has fewer steps than
the solution method at that time, with 52 steps enough to solve
all Rubik's randomness, this trend continued until the last
recorded Kociemba algorithm which is considered the most
optimal Rubik's solution algorithm. at this time with a
maximum number of completion steps of 20 steps discovered by
Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John
Dethridge in 2010. To make the optimal Rubik's solution
method, a complex algorithm is needed so that it requires extra
time and process in doing the Rubik's solution. Therefore, in this
study, we analyze the method for the optimal Rubik's solution
with the simplest possible process using a real-time Rubik's
Cube tracking approach, and the results obtained with a process
that is not too complex but less than optimal in terms of the
number of steps produced.

Keywords— rubik’s solution, tracking cube, rubik’s algorithm

I. INTRODUCTION

 Unstoppable technology development problems help
specific problems that technology can solve[1], and Rubik's
Cube is no exception. Rubik's Cube game is a puzzle game
that is very popular in many countries with the distribution of
physical Rubik's products in more than 30 countries in 2011,
Rubik's Cube was invented by Erno Rubik a professor from
Budapest in Hungary. After Erno Rubik made his first Rubiks
cube he needed time more than a month to complete[2]. At
this time the Rubik's solution method which is considered the
simplest is the Layer-by-layer method which can be found on
the official Rubik's Company website, after the Rubik's 3x3
cube was patented and published methods began to emerge a
new method of solving Rubik's puzzles. Among these
methods of solving Rubik's there are methods that produce
fewer steps of completion than other methods and after that it
became popular to find the most optimal Rubik's solution
method in solving Rubik's puzzles 3x3 and s appears a term
known as God's Algorithm is an algorithm that provides an
optimal solution in the sense that there is no shorter solution
is called God's Algorithm [3] and the maximum number of
steps generated from God's Algorithm is called God's
Number.

The term God's Number was coined because the thought
of a person who could find the shortest sequence of moves to
solve any kind of Rubik's Random must be thousands of
times stronger than an ordinary human being, able to test

millions of different combinations in an instant. the eye,
something that mathematicians believe only God can possess,
the difficulty faced in finding the most optimal solution in
Rubik's 3x3 is that the number of random numbers that can
be generated by Rubik's 3x3 is very large, totaling
43,252,003,274,489,856,000 Rubik's random combinations
[4] that make it very difficult to generate and process even for
very fast computers though.

The history of the God's Number search process dates
back to 1981 when a man named Morwen Thistlewaite
proved using a complex algorithm he devised himself that 52
moves was enough to solve every random of 43 quintillion
different randomizations[4] and continues to emerge. a more
optimal method until finally found the most optimal Rubik's
3x3 solution method to date which was discovered by Tomas
Rokicki, Herbert Kociemba, Morley Davidson, and John
Dethridge in 2010 and named Kociemba Algorithm with a
number of steps 20 and makes God's Number is 20 to date [3]

From the cube puzzle problem above, the search for a
Rubik's solution that has been going on for decades underlies
the making of this research for the purpose of contributing to
the search for a Rubik's solution method that focuses on
optimizing the number of Rubik's solving steps and the
solution process as simple as possible and supported by
information technology exists at the moment.

In this research, the method approach that will be used
is Tracking the Rubik's Solution Path which is carried out on
the simulation results of periodic randomization of Rubik's as
the main concept of the method to be implemented, this
approach is taken because it is considered a simple method
and will produce quite optimal completion steps according to
the researcher. and with this research, it is hoped that it can
add new alternatives for Rubik's game developers in
implementing the Rubik's Cube solution in the Rubik's game
that is made.

II. LITERATURE REVIEW
Rubik's Cube is a game in the form of a mechanical puzzle

invented in 1974 by the Hungarian sculptor and professor of
architecture, Ernő Rubik. Rubik's Cube consists of 9 sides
that can be rotated on each side without breaking and each
side of this cube has nine faces consisting of six different
colors.
When solved/solved, each side of this cube will have one
color the same on each side and a different color from the
other sides[5].

Erno Rubik initially developed moving artworks for his
students in the field of architecture with the initial aim of

helping his students understand three-dimensional problems,
but the cube prototype created by Erno did things the world
had never seen before, namely a cube prototype that had
puzzles. puzzle with an iconic look. In 1975 Erno Rubik
patented his cube prototype as a puzzle game[2].

The layer by layer algorithm is a Rubiks cube algorithm
which is considered the simplest and easiest to understand for
beginners which is recommended by the Rubiks Company as
a start to start solving 3x3 Rubiks.

This kociemba algorithm was created by Herbert
Kociemba to improve the existing Thistlethwaite algorithm
by reducing the number of intermediate groups to two:

a. G0 = (U, D, L, R, F, B)
b. G1 = (U, D, L2, R2, F2, B2)
c. G2 = (1)

As with Thistlethwaite's algorithm, he will find the
correct coset space of G1\ G0 to group the cube into group
G1. Next he will find the optimal solution for Group G1.
Searches in G0 and G1 are both performed using a method
equivalent to Iterative Deepening A* (IDA*) Searches in G1
require a maximum of 12 moves and searches in G1 a
maximum of 18 moves. Michael Reid demonstrated in 1995
that creating a suboptimal solution that takes the cube to
group G1 and looking for the short solution in G1, will
usually result in a shorter overall solution[5].

God's algorithm is an idea that stems from discussions
about how to solve Rubik's Cube puzzles [5], but can also be
applied to combinatorial puzzles and other math games[6]. It
refers to any algorithm that produces a solution that has as
few motions as possible, the idea being that only an
omniscient being will know the optimal step of a given
configuration[7].

The term God's Number was coined because the thought
of a person who could find the shortest sequence of moves to
solve any kind of Rubik's Random must be thousands of
times stronger than an ordinary human being, able to test
millions of different combinations in an instant. eyes,
something that mathematicians believe can only be possessed
by God, the difficulty faced in finding the most optimal
solution in Rubik's 3x3 is because the number of random
combinations that can be generated by Rubik's 3x3 is
43,252,003,274,489,856,000 random combinations of
Rubik's[6].

There are several studies related to this rubik’s.
Research that performs the Rubik's Cube with the Basic
Beginners algorithm and connects the Fridrich algorithm with
80 steps[8]. Research has shown that genetic algorithms are
an effective method for determining the sequence of steps
required to solve a Rubik's cube by randomizing the rubik's
order. The selection of chromosomes that are higher than the
initial-stage Rubik's solution factor leads to a better
solution[9]. The study reduced the step results from 227
movements to complete the Rubik's Cube to 107 steps[10].
Other studies using the k-means method, Simple Linear
Iterative Clustering and the Kociemba algorithm require a lot
of time to optimize the method[11]. There is also a study that
uses 3 algorithms, namely Thistlehwaite, Kociemba and
Rokicki which states that the algorithm is efficient but

difficult for humans to understand[12]. Another study states
that the Kociemba algorithm explains the efficiency in
determining each step in the Rubik's solution[13]. Research
that states it is less effective if used to solve Rubik's problems
because Rubik's Rubik can be solved faster than human
ability and Brute Force has an ability that is less fast when
compared to the IDA* algorithm because it takes a long time
to get a solution[14].

III. SYSTEM PURPOSED

A. Rubik’s Prototype Flow
In this study, the Rubik's solution function which is the

main focus of research will be combined with other functions
so that it will produce a complete Rubik's game prototype,
which includes scramble, reset, and Rubik's solving
functions, along with an overview of the functions that will
be designed in the Rubik's game prototype.

Fig. 1. Rubik's Prototype Flow

B. Data Design
In the implementation of the Rubik's solution, it requires

a Rubik's object which is the only object in solving the
Rubik's cube, therefore it requires a data format that can
represent a 3-dimensional Rubik's object into a data type that
can be executed by Programming Languages starting with
breaking up the Rubik's into small parts and on Rubik's 3x3
there are 3 types of parts, namely:

1. Corner / Corner: is part of the rubik's which has 3
color sides and is located at each end of the rubik's
cube and has a total of 8 corners.

Fig. 2. Corner Section

2. Edge / edge: is part of the rubik's which has 2 sides
of color and lies on each edge of the rubik's and has
a total of 12 edges.

Fig. 3. Edge Section

3. Center / Center: is part of the rubik's which only has

1 color side and is in the middle on each side of the
rubik's and has a total of 6 centers.

Fig. 4. Center section

As before, the data structure above is able to represent
all existing edges from edge 1 to edge 12 which are
represented by numbers 00 to 11, which is slightly
different from the data format in the corner where each
part is represented by 1 digit number, while at the edge
the number of numbers that represent each 1 edge has 2
digits because there are numbers 10 and 11 which have
2 digits, then all edges are represented by 2 digits to
equalize all edge data formats, and then assign the
condition values to each edge as follows:

C. Algorithm Purposed
The method used in this study comes from the initial

concept of God Number search which seeks the shortest
number of steps to solve the Rubik's cube in all types of
randomness which makes it necessary to have all existing
Rubik's randoms and test them, in this case when all randoms
have been successfully simulated and stored in the computer.
and map the random paths that are interrelated then the
Rubik's solution method can be created, but as already
explained that to achieve all Rubik's randomness is very
difficult because the number is very large, namely
43,252,003,274,489,856,000 random combinations which
make it almost impossible to achieve by computers at this
time. And in this study, the simulation method of all
randomness will be reduced to only performing simulations
on steps that are only traversed by random steps that are
inputted in real-time so that it is expected to reduce the

number of processes and time used.

Fig. 5. Algorithm before changing lanes

The picture above illustrates a random simulation that is
made in stages according to the random input received then
the completion step that will be generated is in the form of a
random tracing in reverse towards the top so that the rubiks
will return to normal (see the path in the image with a thicker
line), but there are times when the simulation The newly
created random has been created before, resulting in data
redundancy and a higher number of steps.

The newly created random has been created before,
resulting in data redundancy and a higher number of steps.
For that reason, a tracking stage is needed to check data
redundancy and move the scramble path to the shortest path
as shown in the following figure.

Fig. 6. Algorithm after changing lanes

The line that the scramble path changes makes the steps

one less step.

D. Flowchart Purposed

Fig. 7. Rubik’s Simulation Function

 The System Scramble method or automatic
randomization is basically the same as the manual
randomization method using the same steps (F, F', B, B', L,
L', R, R', U, U', D , D') but what makes the difference is in
the creation of a maneuver or a collection of Rubik's rotation
steps which are run automatically by the computer in this
study using the Random function.

E. Software Design

Fig. 8. Rubiks prototype interface

In the prototype interface above, it only has one display
that is able to accommodate scramble and solving functions
with the left window as an interface for scramble and the right
window for solving, to scramble the user can press the button

containing the Rules letters in the rubik or press the
"Scramble" button. which will shuffle 20 random Rubik's
cubes, and to do the solving by pressing the "Solve" button
on the right window, the completion steps will appear in the
"Solve-Step" city.

IV. RESULTS AND ANALYSIS

At the Data Analysis stage the Rubik's section has
been divided into 3 types of sections and only 2 types of
sections will be used for the Rubik's data structure in this
study, namely the Corner section and the Edge section, at this
data design phase the Rubik's sections will be arranged by
number into string data type and given the value of miss in
each part, the following is the arrangement of the data
structure:

Fig. 9. Rubik's Corner Number

* Data = (“01234567”)

The data structure above is able to represent all

corners from corner 1 to corner 8 which are represented by
the numbers 0 to 7, but as explained in the data analysis stage
that each part has the possibility of a miss value which in the
corner there are 3 conditions are true, miss(1), and miss(2),
therefore it is necessary to give a condition sign in the form
of a value that indicates the condition of each corner in the
data structure and the data is generated as follows:

Fig. 10. Miss Corner Rubik's number

* Data = (“0010203040506070”)

The data structure above increases from the previous

8 digits, then increases to 16 digits. The additional digits are
adding 1 digit number to each number representing the
corner, the number 0 indicates that all corners are true, the
number 1 indicates the corner is miss (1), and number 2
shows the corner is miss(2). All digits added to the data above
are all 0 which means all corners are true and this value will
change to 1 if the side that should be above changes position
to the right and will change to 2 if the side that should be
above changes position to the left like shown in the image
above.

After the data structure that represents the position
and condition of each corner is arranged, it is necessary to
create a data structure that can represent the position of each
edge and also its condition with the same concept as the
corner data structure, namely in the form of numbers that are

entered into the string data type and the resulting data is as
follows :

Fig. 11. Rubik's Corner Number

*Data = (“000102030405060708091011”)

As before, the data structure above is able to

represent all existing edges from edge 1 to edge 12 which are
represented by numbers 00 to 11, which is slightly different
from the data format in the corner where each part is
represented by 1 digit number, while at the edge the number
of numbers that represent each 1 edge has 2 digits because
there are numbers 10 and 11 which have 2 digits, then all
edges are represented by 2 digits to equalize all edge data
formats, and then assign the condition values to each edge as
follows:

Fig. 12. Miss Edge Rubik's number

*Data = (“000010020030040050060070080090100110”)

Same as before the condition value of each edge is

added after the value representing the edge is written and in
the edge case there are 2 conditions, namely true and miss
conditions with a value of 0 representing true and a value of
1 representing miss in the data structure above all conditions
are represented by a value of 0 which means all conditions
edge is true and this value will change to 1 if the side that
should be on top moves down or if the side that should be on
the right changes its position to the left side as shown in the
picture above, this makes 1 edge represented by 3 digit
number (first 2 digits indicate edge position and last 1 digit
indicates miss value on edge).

After the corner and edge data structures are
arranged, the next step is to combine the edge and corner data
into 1 complete string and produce the following data:

Data =
(“00102030405060700000100200300400500600700800901
00110”)

The result of the data structure above represents a 3-
dimensional Rubik's cube that has the correct position and
condition (the position is solved) into 1 string consisting of
52 digits (16 digits first represents the corner and the
remaining 36 digits represent the edge).

In solving the rubik's cube, the rubik's object to be
solved must be a randomized rubik's so that the previous
rubik's must go through a scramble or randomization process
either manually or automatically, in the manual scramble
method the user is required to press the rotation steps button
manually. manual so as to produce a maneuver / collection of
rotational steps, in carrying out rotational steps there are
limitations in the form of possible rotations, namely F, F', B,
B', L, L' ,R ,R' ,U ,U ' ,D ,D' with the following explanation:

Fig. 13. Rubik's Sides

F = Front / Front (90o rotation clockwise)
F' = Accent Front (90o rotation counterclockwise)
B = Back / Back (rotation 90o clockwise)
B' = Back Accent (90o rotation counterclockwise)
L = Left / Left (90o rotation clockwise)
L' = Left Accent (90o rotation counterclockwise)
R = Right (rotation 90o clockwise)
R' = Right Accent (90o rotation counterclockwise)
U = Up / Up (90o rotation clockwise)
U' = Up Accent (90o rotation counterclockwise)
D = Down / Down (90o rotation clockwise)
D' = Down Accent (90o rotation counterclockwise)

 The scramble mechanism is in the form of manual
scramble input by the user by pressing the buttons for the
Rubik's rotation steps which include: F, F', B, B', L, L', R, R',
U, U', D ,D' and the concept of changing the data structure in
the rubik's which is conditionally solved into the rubik's data
structure which is in a randomized condition by each step of
the scramble (F, F', B, B', L, L', R, R', U, U', D , D') and the
following results are obtained:

Table I. Results Changes To The Rubiks Data Structure
Randomization

Rules
Initial Condition Condition After Scramble Position Conditions After Adding Miss

Front (F) 00102030405060 70000010020030
04005006007008 0090100110

00106020405070 30000010020060
04005011003008 0090100070

00106221405071 32000010020061
04005011003008 0090100071

Front Accent
(F’)

00102030405060 70000010020030
04005006007008 0090100110

00103070405020 60000010020070
04005003011008 0090100060

00103271405021 62000010020070
04005003111108 0090100060

Back (B) 00102030405060 70000010020030
04005006007008 0090100110

10502030004060 70050010020030
00008006007004 0090100110

11522030024160 70051010020030
00008006007004 1090100110

Back Accent
(B’)

00102030405060 70000010020030
04005006007008 0090100110

40002030501060 70040010020030
08000006007005 0090100110

41022030521160 70040010020030
08100106007005 0090100110

Left (L) 00102030405060 70000010020030
04005006007008 0090100110

40100030605020 70000040020030
09005001007008 0060100110

42100130615022 70000041020030
09005001007008 0061100110

Left Accent (L’) 00102030405060 70000010020030
04005006007008 0090100110

20106030005040 70000060020030
01005009007008 0040100110

22106130015042 70000060020030
01105009107008 0040100110

Right (R’) 00102030405060 70000010020030
04005006007008 0090100110

00302070401060 50000010070030
04002006010008 0090050110

00312072401260 51000010071030
04002006010008 0090051110

Right Accent
(R’)

00102030405060 70000010020030
04005006007008 0090100110

00502010407060 30000010050030
04010006002008 0090070110

00512012407260 31000010050030
04010106002108 0090070110

Up (U’) 00102030405060 70000010020030
04005006007008 0090100110

20003010405060 70010030000020
04005006007008 0090100110

20003010405060 70010030000020
04005006007008 0090100110

Up Accent (U’) 00102030405060 70000010020030
04005006007008 0090100110

10300020405060 70020000030010
04005006007008 0090100110

10300020405060 70020000030010
04005006007008 0090100110

Down (D’) 00102030405060 70000010020030
04005006007008 0090100110

00102030507040 60000010020030
04005006007010 0080110090

00102030507040 60000010020030
04005006007010 0080110090

Down Accent
(D’)

00102030405060 70000010020030
04005006007008 0090100110

00102030604070 50000010020030
04005006007009 0110080100

00102030604070 50000010020030
04005006007009 0110080100

For Example:

From the results of the scramble process above, it is

known that the randomization process is divided into 2
stages, namely solving and rearranging the corner and edge
data positions according to the rules of each randomized
step and secondly adding the miss values on the corners and
edges according to the rules of each randomization.

V. CONCLUSION

Based on the results of research that has been carried out
using the Rubik's Solution method using a real-time cube
tracking approach, the following conclusions can be drawn;

1. The method applied results in the number of steps
for solving the rubik's cube which is still less than
optimal.

2. The process that is run when solving the problem is
quite simple with the special condition that the
randomization path must be available making it

have a lack of flexibility in solving Rubik's which
does not have a randomization trace.

VI. FUTURE WORK
Suggestions for the method of solving Rubik's in this

study to be better in the future.
1. Reviewing the existing Rubik's solution method and

increasing the efficiency of the Rubik's solution
step.

2. Improved process optimization when performing
simulations so that there are fewer processes.

REFERENCE

[1] T. N. Suharsono, D. Anggraini, Kuspriyanto, B.

Rahardjo, and Gunawan, “Implementation of Simple
Verifiability Metric to Measure the Degree of
Verifiability of E-Voting Protocol,” in 2020 14th
International Conference on Telecommunication
Systems, Services, and Applications (TSSA, Nov.
2020, pp. 1–3. doi:
10.1109/TSSA51342.2020.9310915.

[2] Rubik’s Company, “Rubik’s Official Website,”
Rubik’s Official Website, 2019.

[3] H. Kociemba, “Kociemba,” 2018.
[4] D. Ferenc, “Rubiks Cube Wiki God Number,” 2019.
[5] H. Agung, J. Jessica, and R. Januar, “Implementasi

Algoritma Kociemba pada Rekomendasi
Penyelesaian Langkah Permainan Rubik,” Jurnal
Sistem dan Teknologi Informasi (JUSTIN), vol. 7, no.
3, p. 139, Jul. 2019, doi: 10.26418/justin.v7i3.30197.

[6] X. Chen and Z. J. Ding, “Solving extra-high-order
Rubikʼs Cube problem by a dynamic simulated
annealing,” Computer Physics Communications, vol.
183, no. 8, pp. 1658–1663, Aug. 2012, doi:
10.1016/j.cpc.2012.03.003.

[7] J. Jery, “New State Based Algorithm For Rubiks
Cube,” International Journal of Computer Sciences
and Engineering, vol. 7, no. 2, pp. 40–45, Feb. 2019,
doi: 10.26438/ijcse/v7i2.4045.

[8] P. R. Chandre, A. Raut, Riya, S. Terkar, and J. Shah,
“Rubik’s Cube Solver,” International Journal for
Scientific Research & Development, vol. 5, no. 01,
2017.

[9] A. Tyagi and P. Tyagi, “GEN-R: Genetic Algorithm
Based Model for Rubik’s Cube Solution Generator,”
ijsat, 2011.

[10] K. S. Anil, “Solution For Rubik’s Cube by
Using Genetic Algorithm,” International Journal of
Engineering Sciences & Research Technology, vol.
4, 2015.

[11] J. Hack and K. Shutzberg, “Rubiks Cube
Localization, Face Detection, and Interactive
Solving,” Stanford University, 2015.

[12] N. El-Sourani, S. Hauke, and M. Borschbach, “An
Evolutionary Approach for Solving the Rubik’s Cube
Incorporating Exact Methods,” 2010, pp. 80–89. doi:
10.1007/978-3-642-12239-2_9.

[13] H. Sawhney, S. Sinha, A. Lohia, P. Jalan, and P.
Harlalka, “Autonomous Rubik’s Cube Solver Using
Image Processing,” INTERNATIONAL JOURNAL
OF ENGINEERING RESEARCH & TECHNOLOGY,
vol. 2, no. 10, 2013.

[14] C. R. Gunawan, A. Ihsan, and Munawir, “Optimasi
Penyelesaian Permainan Rubik’s Cube
Menggunakan Algoritma IDA* dan Brute Force,”
Jurnal Infomedia, vol. 3, no. 1, 2018.

