Malka, Aysara Restu (2023) Erlanger program pada transformasi Affine. Sarjana thesis, UIN Sunan Gunung Djati Bandung.
|
Text (COVER)
1_cover.pdf Download (91kB) | Preview |
|
|
Text (ABSTRAK)
2_abstrak.pdf Download (64kB) | Preview |
|
|
Text (DAFTAR ISI)
3_daftarisi.pdf Download (69kB) | Preview |
|
|
Text (BAB I)
4_bab1.pdf Download (171kB) | Preview |
|
Text (BAB II)
5_bab2.pdf Restricted to Registered users only Download (221kB) | Request a copy |
||
Text (BAB III)
6_bab3.pdf Restricted to Registered users only Download (238kB) | Request a copy |
||
Text (BAB IV)
7_bab4.pdf Restricted to Registered users only Download (791kB) | Request a copy |
||
Text (BAB V)
8_bab5.pdf Restricted to Registered users only Download (135kB) | Request a copy |
||
Text (DAFTAR PUSTAKA)
9_daftarpustaka.pdf Restricted to Registered users only Download (181kB) | Request a copy |
Abstract
INDONESIA : Pada penelitian ini dibahas mengenai keterkaitan atara Erlanger Program pada Transformasi Affine. Erlanger Program adalah suatu pendekatan matematika yang digunakan untuk mengidentifikasi objek geometri berdasarkan simetri dan invarian. Transformasi Affine merupakan Transformasi geometri yang mempertahankan paralelisme dan rasio perbandingan pada garis-garis parallel. Transformasi Affine menggambarkan perubahan geometri yang dalam penelitian ini ditunjukkan dengan simulasi, sementara Erlanger Program memberikan kerangka kerja mengidentifikasi karakteristik objek yang dapat diklasifikasikan berdasarkan simetri dan invarian. Dibahas pula mengenai pembuktian GL(3) merupakan grup dan keterkaitan antara grup Affine dengan GL(3) yang terbukti bahwa AF(2) merupakan subgroup dari GL(3). ENGLISH : This research discusses the relation between Erlanger Program on Affine Transformation. Erlanger Program is a mathematical approach used to identify geometry objects based on symmetry and invariance. Affine transformation is a geometry transformation that maintains parallelism and comparison ratio on parallel lines. The Affine transformation describes geometry changes which in this study are shown by simulation, while the Erlanger Program provides a framework for identifying the characteristics of objects that can be classified based on symmetry and invariance. Also discussed is the proof that GL(3) is a group and the relationship between Affine groups and GL(3) which proves that AF(2) is a subgroup of GL(3).
Item Type: | Thesis (Sarjana) |
---|---|
Uncontrolled Keywords: | Erlanger Program; Grup; GL(3); Transformasi Affine |
Subjects: | Algebra > Groups and Groups Theory Geometry > Euclidean Geometry |
Divisions: | Fakultas Sains dan Teknologi > Program Studi Matematika |
Depositing User: | aysara restu malka |
Date Deposited: | 19 Sep 2023 01:05 |
Last Modified: | 03 Oct 2023 08:12 |
URI: | https://digilib.uinsgd.ac.id/id/eprint/78239 |
Actions (login required)
View Item |