Saefurrachman, Muhammad (2024) Model SEIQRS pada penyebaran Covid-19 dengan kontrol Intervensi Nonfarmasi, Vaksinasi, dan Penanganan Cepat. Sarjana thesis, UIN Sunan Gunung Djati Bandung.
|
Text (COVER)
1_cover.pdf Download (51kB) | Preview |
|
|
Text (ABSTRAK)
2_abstrak.pdf Download (162kB) | Preview |
|
|
Text (DAFTAR ISI)
3_daftarisi.pdf Download (138kB) | Preview |
|
|
Text (BAB I)
4_bab1.pdf Download (160kB) | Preview |
|
Text (BAB II)
5_bab2.pdf Restricted to Registered users only Download (457kB) | Request a copy |
||
Text (BAB III)
6_bab3.pdf Restricted to Registered users only Download (329kB) | Request a copy |
||
Text (BAB IV)
7_bab4.pdf Restricted to Registered users only Download (429kB) | Request a copy |
||
Text (BAB V)
8_bab5.pdf Restricted to Registered users only Download (223kB) | Request a copy |
||
Text (DAFTAR PUSTAKA)
9_daftarpustaka.pdf Restricted to Registered users only Download (130kB) | Request a copy |
Abstract
INDONESIA : Pada awal tahun 2020, Organisasi Kesehatan Dunia (WHO) mengklasifikasikan Covid-19 sebagai ancaman kesehatan global yang pertama kali tercatat di Wuhan, Cina dan menetapkan penyakit ini disebabkan oleh infeksi Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Penelitian ini membahas model matematika penyebaran Covid-19 yang bertujuan untuk menjelaskan proses penyebaran Covid-19 dan meminimalkan jumlah populasi yang terinfeksi Covid-19. Model yang digunakan adalah model epidemiologi SEIQRS yaitu Susceptible (S), Exposed (E), Infected (I), Quarantined (Q) dan Recovered (R). Selanjutnya model ini akan dilakukan analisis sehingga diperoleh dua titik kesetimbangan yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik, bilangan reproduksi dasar (R0) serta kestabilan dari kedua titik kesetimbangan tersebut. Penelitian ini juga membahas model dinamika Covid-19 dengan penambahan variabel kontrol yaitu intervensi nonfarmasi (u), vaksinasi (v) dan penanganan cepat (w). Setelah dilakukan penyelesaian kontrol optimal dengan menggunakan Prinsip Minimum Pontryagin serta simulasi numerik dengan metode Runge-Kutta orde 4, diperoleh hasil bahwa pemberian ketiga kontrol tersebut berpengaruh secara signifikan sehingga dapat meminimalkan jumlah populasi yang terpapar, terinfeksi dan dikarantina Covid-19. ENGLISH : At the beginning of 2020, the World Health Organization (WHO) classified Covid-19 as the first recorded global health threat, originating in Wuhan, China, and identified the disease as caused by the infection of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). In this study, we discuss a mathematical model of the spread of Covid-19 aimed at explaining the proccess of Covid-19 and minimizing the number of populations infected with Covid-19. The model used is the SEIQRS epidemiological model, which includes Susceptible (S), Exposed (E), Infected (I), Quarantined (Q), and Recovered (R). Furthermore, the model is analyzed to obtain two equilibrium points: the disease-free equilibrium point and the endemic equilibrium point, the basic reproduction number (R0), and the stability of these equilibrium points. This study also discusses the dynamics of the Covid-19 model with the addition of control variables, namely non-pharmaceutical interventions (u), vaccination (v), and quick action (w). After solving optimal control using the Pontryagin Minimum Principle and numerical simulations using the 4th-order Runge-Kutta method, the results show that the implementation of these three controls significantly affects and minimizes the number of populations exposed, infected and quarantined by Covid-19.
Item Type: | Thesis (Sarjana) |
---|---|
Uncontrolled Keywords: | Covid-19; Model Matematika; Bilangan Reproduksi Dasar; Kestabilan; Kontrol Optimal |
Subjects: | Mathematics > Data Processing and Analysis of Mathematics Analysis, Theory of Functions Analysis, Theory of Functions > Analysis and Calculus Analysis, Theory of Functions > General Aspects of Analysis Applied mathematics > Mathematical Optimization Applied mathematics > Special Topics of Applied Mathematics |
Divisions: | Fakultas Sains dan Teknologi > Program Studi Matematika |
Depositing User: | Muhammad Saefurrachman |
Date Deposited: | 25 Mar 2024 07:53 |
Last Modified: | 25 Mar 2024 07:53 |
URI: | https://digilib.uinsgd.ac.id/id/eprint/86004 |
Actions (login required)
View Item |