Andriansyah, Aji (2025) Positif lengkap matriks simetris pentadiagonal stokastik ganda serta kaitannya dengan dekomposisi cholesky. Sarjana thesis, UIN Sunan Gunung Djati Bandung.
|
Text
1_cover.pdf Download (674kB) | Preview |
|
|
Text
2_abstrak.pdf Download (140kB) | Preview |
|
|
Text
3_skbebasplagiarism.pdf Download (454kB) | Preview |
|
|
Text
4_daftarisi.pdf Download (73kB) | Preview |
|
|
Text
5_bab1.pdf Download (151kB) | Preview |
|
![]() |
Text
6_bab2.pdf Restricted to Registered users only Download (239kB) | Request a copy |
|
![]() |
Text
7_bab3.pdf Restricted to Registered users only Download (447kB) | Request a copy |
|
![]() |
Text
8_bab4.pdf Restricted to Registered users only Download (109kB) | Request a copy |
|
![]() |
Text
9_daftarpustaka.pdf Restricted to Repository staff only Download (90kB) | Request a copy |
Abstract
INDONESIA: Penelitian ini membahas konstruksi dan analisis matriks simetris pentadiagonal stokastik ganda serta kaitannya dengan Dekomposisi Cholesky. Konstruksi matriks dilakukan melalui pendekatan rekursif sederhana, metode blok diagonal, dan konstruksi alternatif untuk memperoleh matriks positif lengkap. Selanjutnya, Dekomposisi Matriks Positif Lengkap dianalisis menggunakan $A=VV^T$ yang kemudian dikaitkan dengan Dekomposisi Cholesky $A=LL^T$ Hasil yang diperoleh menunjukkan bahwa Dekomposisi Cholesky dapat menghasilkan matriks segitiga bawah dengan entri non-negatif, sehingga bentuk $LL^T$ ekuivalen dengan $VV^T$. matriks yang definit positif pada matriks simetris pentadiagonal stokastik ganda dapat direpresentasikan sebagai matriks positif lengkap dan memiliki keterkaitan langsung dengan Dekomposisi Cholesky. ENGLISH: This research discusses the construction and analysis of doubly stochastic symmetric pentadiagonal matrices and their relation to Cholesky Decomposition. The construction of the matrices is carried out through a simple recursive approach, block diagonal methods, and an alternative construction to obtain completely positive matrices. Furthermore, the Completely Positive Matrix Decomposition is analyzed using $A=VV^T$, which is then related to the Cholesky Decomposition $A=LL^T$. The results show that Cholesky Decomposition can produce a lower triangular matrix with non-negative entries, so that the form $LL^T$ is equivalent to $VV^T$. Positive definite matrices within the class of doubly stochastic symmetric pentadiagonal matrices can therefore be represented as completely positive matrices and have a direct connection with Cholesky Decomposition.
Item Type: | Thesis (Sarjana) |
---|---|
Uncontrolled Keywords: | matriks positif lengkap; matriks simetris pentadiagonal stokastik ganda; Dekomposisi Cholesky |
Subjects: | Mathematics Algebra |
Divisions: | Fakultas Sains dan Teknologi > Program Studi Matematika |
Depositing User: | Andriansyah Aji |
Date Deposited: | 27 Aug 2025 03:08 |
Last Modified: | 27 Aug 2025 03:08 |
URI: | https://digilib.uinsgd.ac.id/id/eprint/116173 |
Actions (login required)
![]() |
View Item |