Positif lengkap matriks simetris pentadiagonal stokastik ganda serta kaitannya dengan dekomposisi cholesky

Andriansyah, Aji (2025) Positif lengkap matriks simetris pentadiagonal stokastik ganda serta kaitannya dengan dekomposisi cholesky. Sarjana thesis, UIN Sunan Gunung Djati Bandung.

[img]
Preview
Text
1_cover.pdf

Download (674kB) | Preview
[img]
Preview
Text
2_abstrak.pdf

Download (140kB) | Preview
[img]
Preview
Text
3_skbebasplagiarism.pdf

Download (454kB) | Preview
[img]
Preview
Text
4_daftarisi.pdf

Download (73kB) | Preview
[img]
Preview
Text
5_bab1.pdf

Download (151kB) | Preview
[img] Text
6_bab2.pdf
Restricted to Registered users only

Download (239kB) | Request a copy
[img] Text
7_bab3.pdf
Restricted to Registered users only

Download (447kB) | Request a copy
[img] Text
8_bab4.pdf
Restricted to Registered users only

Download (109kB) | Request a copy
[img] Text
9_daftarpustaka.pdf
Restricted to Repository staff only

Download (90kB) | Request a copy

Abstract

INDONESIA: Penelitian ini membahas konstruksi dan analisis matriks simetris pentadiagonal stokastik ganda serta kaitannya dengan Dekomposisi Cholesky. Konstruksi matriks dilakukan melalui pendekatan rekursif sederhana, metode blok diagonal, dan konstruksi alternatif untuk memperoleh matriks positif lengkap. Selanjutnya, Dekomposisi Matriks Positif Lengkap dianalisis menggunakan $A=VV^T$ yang kemudian dikaitkan dengan Dekomposisi Cholesky $A=LL^T$ Hasil yang diperoleh menunjukkan bahwa Dekomposisi Cholesky dapat menghasilkan matriks segitiga bawah dengan entri non-negatif, sehingga bentuk $LL^T$ ekuivalen dengan $VV^T$. matriks yang definit positif pada matriks simetris pentadiagonal stokastik ganda dapat direpresentasikan sebagai matriks positif lengkap dan memiliki keterkaitan langsung dengan Dekomposisi Cholesky. ENGLISH: This research discusses the construction and analysis of doubly stochastic symmetric pentadiagonal matrices and their relation to Cholesky Decomposition. The construction of the matrices is carried out through a simple recursive approach, block diagonal methods, and an alternative construction to obtain completely positive matrices. Furthermore, the Completely Positive Matrix Decomposition is analyzed using $A=VV^T$, which is then related to the Cholesky Decomposition $A=LL^T$. The results show that Cholesky Decomposition can produce a lower triangular matrix with non-negative entries, so that the form $LL^T$ is equivalent to $VV^T$. Positive definite matrices within the class of doubly stochastic symmetric pentadiagonal matrices can therefore be represented as completely positive matrices and have a direct connection with Cholesky Decomposition.

Item Type: Thesis (Sarjana)
Uncontrolled Keywords: matriks positif lengkap; matriks simetris pentadiagonal stokastik ganda; Dekomposisi Cholesky
Subjects: Mathematics
Algebra
Divisions: Fakultas Sains dan Teknologi > Program Studi Matematika
Depositing User: Andriansyah Aji
Date Deposited: 27 Aug 2025 03:08
Last Modified: 27 Aug 2025 03:08
URI: https://digilib.uinsgd.ac.id/id/eprint/116173

Actions (login required)

View Item View Item