Damayanti, Salsabila (2025) Text generation identifikasi kerusakan pada kendaraan bermotor mengggunakan indogpt. Sarjana thesis, UIN Sunan Gunung Djati Bandung.
|
Text
1_cover.pdf Download (2MB) | Preview |
|
|
Text
2_abstrak.pdf Download (549kB) | Preview |
|
|
Text
3_skbebasplagiarism.pdf Download (447kB) | Preview |
|
|
Text
4_daftarisi.pdf Download (113kB) | Preview |
|
|
Text
5_bab1.pdf Download (227kB) | Preview |
|
![]() |
Text
6_bab2.pdf Restricted to Registered users only Download (401kB) | Request a copy |
|
![]() |
Text
7_bab3.pdf Restricted to Registered users only Download (279kB) | Request a copy |
|
![]() |
Text
8_bab4.pdf Restricted to Registered users only Download (653kB) | Request a copy |
|
![]() |
Text
9_bab5.pdf Restricted to Registered users only Download (131kB) | Request a copy |
|
![]() |
Text
10_daftarpustaka.pdf Restricted to Registered users only Download (183kB) | Request a copy |
Abstract
INDONESIA: Penelitian ini berfokus pada pengembangan sistem identifikasi kerusakan kendaraan bermotor berbasis text generation dengan memanfaatkan model IndoGPT. Tujuan utamanya adalah mengevaluasi kemampuan model dalam menghasilkan respons berbentuk solusi secara otomatis dari masukan berupa gejala kerusakan kendaraan. Proses pengembangan mengikuti tahapan metodologi CRISP-DM, mulai dari pemahaman permasalahan hingga tahap evaluasi model. Tiga model IndoGPT digunakan dalam proses fine-tuning, yaitu indobenchmark/indogpt, w11wo/indo-gpt2-small, dan cahya/gpt2-small-indonesian-522M, untuk menghasilkan teks solusi dari input gejala. Evaluasi dilakukan melalui pengamatan terhadap performa pelatihan serta pengujian berbasis prompt yang dibandingkan dengan jawaban referensi guna menilai tingkat kesesuaian hasil keluaran model. Hasil menunjukkan bahwa model indobenchmark/indogpt memberikan performa paling konsisten, dengan nilai loss terendah dan tingkat akurasi jawaban tertinggi dibandingkan dua model lainnya. Penelitian ini berkontribusi dalam penerapan teknologi NLP untuk sektor otomotif, khususnya dalam mendukung proses identifikasi kerusakan kendaraan secara otomatis pada tahap awal. ENGLISH: This research focuses on developing a motor vehicle damage identification system based on text generation using the IndoGPT model. The main objective is to evaluate the model's ability to automatically generate solution-based responses from input in the form of vehicle damage symptoms. The development process follows the CRISP-DM methodology, from problem understanding to model evaluation. Three IndoGPT models were used in the fine-tuning process: indobenchmark/indogpt, w11wo/indo-gpt2-small, and cahya/gpt2-small-indonesian-522M, to generate solution texts from symptom inputs. Evaluation was conducted by observing training performance and prompt-based testing, which were compared with reference answers to assess the level of consistency in the model's output. The results show that the indobenchmark/indogpt model provides the most consistent performance, with the lowest loss value and the highest answer accuracy rate compared to the other two models. This research contributes to the application of NLP technology in the automotive sector, particularly in supporting the process of automatically identifying vehicle damage at an early stage.
Item Type: | Thesis (Sarjana) |
---|---|
Additional Information: | tdak ada lampiran |
Uncontrolled Keywords: | IndoGPT; text generation; kerusakan pada kendaraan bermotor; CRISP-DM |
Subjects: | Applied Physics Applied Physics > Computer Engineering |
Divisions: | Fakultas Sains dan Teknologi > Program Studi Teknik Informatika |
Depositing User: | Salsabila Damayanti |
Date Deposited: | 28 Aug 2025 05:35 |
Last Modified: | 28 Aug 2025 05:35 |
URI: | https://digilib.uinsgd.ac.id/id/eprint/116400 |
Actions (login required)
![]() |
View Item |