Salsabila, Lailiana (2025) Implementasi Deep Learning dengan Metode Convolutional Neural Network (CNN) pada Arm Robot berbasis kamera untuk deteksi warna objek. Sarjana thesis, UIN Sunan Gunung Djati Bandung.
|
Text (COVER)
1_cover.pdf Download (291kB) | Preview |
|
|
Text (ABSTRAK)
2_abstrak.pdf Download (221kB) | Preview |
|
|
Text (LEMBAR PERNYATAAN)
3_skbebasplagiarism.pdf Download (413kB) | Preview |
|
|
Text (DAFTAR ISI)
4_daftarisi.pdf Download (275kB) | Preview |
|
|
Text (BAB I)
5_bab1.pdf Download (238kB) | Preview |
|
|
Text (BAB II)
6_bab2.pdf Restricted to Registered users only Download (726kB) | Request a copy |
||
|
Text (BAB III)
7_bab3.pdf Restricted to Registered users only Download (518kB) | Request a copy |
||
|
Text (BAB IV)
8_bab4.pdf Restricted to Registered users only Download (1MB) | Request a copy |
||
|
Text (BAB V)
9_bab5.pdf Restricted to Registered users only Download (217kB) | Request a copy |
||
|
Text (DAFTAR PUSTAKA)
10_daftarpustaka.pdf Restricted to Registered users only Download (208kB) | Request a copy |
Abstract
INDONESIA: Telah dikembangkan sebuah Arm Robot dengan 4 Degree of Freedom (DoF) yang mampu mendeteksi dan mengklasifikasikan objek berdasarkan warna menggunakan kamera (webcam) dan metode Convolutional Neural Network (CNN) dengan model VGG16. Sistem ini dirancang untuk mengenali warna objek yang ditangkap oleh ka- mera, kemudian memindahkannya ke kotak yang sesuai dengan warnanya. Pemodelan dilakukan menggunakan bahasa pemrograman Python. Pengujian dilakukan terhadap empat kelas warna (merah, biru, kuning, hitam) serta variasi intensitas cahaya (17 lux, 47 lux, 70 lux, dan 88 lux). Sistem mampu mendeteksi warna dengan baik pada selu- ruh variasi, kecuali pada intensitas cahaya 17 lux dan 47 lux yang menghasilkan satu kegagalan deteksi akibat pencahayaan yang terlalu rendah. Uji coba juga dilakukan pa- da variasi latar belakang dan bentuk objek (segitiga, bulat dan belah ketupat), dimana seluruh warna target tetap dapat dikenali dengan baik kecuali 1 percobaan pada belah ketupat dengan intensitas cahaya sebesar 17 lux. Hasil menunjukkan bahwa bentuk dan latar belakang objek tidak memberikan pengaruh yang signifikan terhadap proses klasifikasi warna oleh sistem. English: A 4-Degree of Freedom (DoF) Arm Robot has been developed, capable of detecting and classifying objects based on color using a webcam and the Convolutional Neural Network (CNN) method with the VGG16 model. This system is designed to recognize the color of objects captured by the camera and then move them to a box corresponding to their color. The modeling was carried out using the Python programming language. Testing was conducted on four color classes (red, blue, yellow, black) under varying light intensities (17 lux, 47 lux, 70 lux, and 88 lux). The system was able to detect co- lors well under all lighting variations, except at 17 lux and 47 lux, where one detection failure occurred due to insufficient lighting. Trials were also conducted with varying backgrounds and object shapes (triangle, circle, and rhombus), where all target colors were still successfully recognized, except for one instance with a rhombus-shaped ob- ject under 17 lux lighting. The results show that object shape and background do not significantly affect the system’s color classification process.
| Item Type: | Thesis (Sarjana) |
|---|---|
| Uncontrolled Keywords: | Deep Learning; Convolutional Neural Network; deteksi warna; arm robot; kamera; VGG16 Deep Learning; Convolutional Neural Network; color detection; robotic arm; camera; VGG16. |
| Subjects: | Physics > Research and Statistical Methods of Physics Physics > Instrumentation of Physics Light, Infrared and Ultraviolet Phenomena > Physical Optics |
| Divisions: | Fakultas Sains dan Teknologi > Program Studi Fisika |
| Depositing User: | Lailiana Salsabila |
| Date Deposited: | 07 Jan 2026 06:54 |
| Last Modified: | 07 Jan 2026 06:54 |
| URI: | https://digilib.uinsgd.ac.id/id/eprint/127201 |
Actions (login required)
![]() |
View Item |



