Implementasi algoritma apriori pada sales forecasting di PT. Alfaria TBK Cirebon

Hamzah, Imam Ramadhan (2018) Implementasi algoritma apriori pada sales forecasting di PT. Alfaria TBK Cirebon. Diploma thesis, UIN Sunan Gunung Djati Bandung.

[img]
Preview
Text (COVER)
1_cover.pdf

Download (78kB) | Preview
[img]
Preview
Text (ABSTRAK)
2_abstrak.pdf

Download (30kB) | Preview
[img]
Preview
Text (DAFTAR ISI)
3_daftarisi.pdf

Download (104kB) | Preview
[img]
Preview
Text (BAB I)
4_bab1.pdf

Download (122kB) | Preview
[img] Text (BAB II)
5_bab2.pdf
Restricted to Registered users only

Download (497kB) | Request a copy
[img] Text (BAB III)
6_bab3.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[img] Text (BAB IV)
7_bab4.pdf
Restricted to Registered users only

Download (749kB) | Request a copy
[img] Text (BAB V)
8_bab5.pdf
Restricted to Registered users only

Download (29kB) | Request a copy
[img] Text (DAFTAR PUSTAKA)
9_daftarpustaka.pdf
Restricted to Registered users only

Download (123kB) | Request a copy

Abstract

Pada Minimarket Alfamart setiap harinya terjadi banyak transaksi penjualan, sehingga data yang disimpan di database sangat besar. Data yang banyak bisa dijadikan informasi yang bermanfaat bagi pemilik minimarket dalam pengambilan kebijakan. Untuk menggali data yang banyak tersebut digunakan teknik data mining. Data mining menggunakan analisis data untuk menemukan pola dan hubungan didalam data yang mungkin digunakan untuk membuat ramalan yang akurat. Pada penelitian ini Data mining digunakan untuk meramalkan penjualan barang di Minimarket Alfamart. Peramalan yaitu mengestimasi nilai masa depan berdasarkan pola-pola didalam sekumpulan data. Untuk melakukan peramalan penjualan di waktu yang akan datang digunakan metode time series. Peramalan data time series memprediksi apa yang akan terjadi berdasarkan data historis masa lalu. Metode time series untuk peramalan penjualan di Minimarket Alfamart menggunakan perhitungan exponential sm oothing dan moving average. Dari perhitungan tersebut dicari nilai MAD (Mean Absolute Deviation) atau kesalahan peramalan. Dimana nilai MAD yang terkecil dari perhitungan exponential smoothing dan moving average merupakan hasil peramalan dengan kesalahan yang kecil. Hasil peramalan tidak akan selalu tepat karena dipengaruhi beberapa faktor permintaan pasar. Namun tidak berarti bahwa ramalan yang dilakukan tidak berguna. Minimarket Alfamart on a daily basis there are many sales transactions, so that the data stored in the database is very large. The data can be used as much useful information for the owner of a minimarket in policy making. To explore the data that is used a lot of data mining technique. Data mining uses data analysis to discover patterns and relationships in data that may be used to make accurate predictions. In this research, data mining is used to forecast the sales of goods in Minimarket Alfamart. Forecasting the future based on measuring the value of the patterns in the data collection. To perform sales forecasting in the future to use the method o f time series. Forecasting time series data to predict what will happen based on past historical data. Time series methods for forecasting sales in the calculation Minimarket Alfamart using exponential smoothing and moving average. Of the count sought the MAD (Mean Absolute Deviation) or forecasting errors. Where MAD is the smallest value of the calculation of exponential smoothing and moving average is the result of forecasting with a small error. Forecasting results will not always be appropriate because the market demand influenced by several factors. But it does not mean that the forecast is made useless.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Data Mining; Time Series; Pola penjualan; Time Series; Sales forecasting;
Subjects: Technology, Applied Sciences
Divisions: Fakultas Sains dan Teknologi > Program Studi Teknik Informatika
Depositing User: Imam Ramadhan Hamzah
Date Deposited: 01 Nov 2018 04:10
Last Modified: 01 Nov 2018 04:10
URI: https://digilib.uinsgd.ac.id/id/eprint/15883

Actions (login required)

View Item View Item