Perbandingan metode Hanif-Rafi dan metode Harmonic Mean Approach untuk menyelesaikan masalah transportasi

Setiawan, Muhamad Agung (2022) Perbandingan metode Hanif-Rafi dan metode Harmonic Mean Approach untuk menyelesaikan masalah transportasi. Sarjana thesis, UIN Sunan Gunung Djati Bandung.

[img]
Preview
Text (COVER)
1_cover-2.pdf

Download (115kB) | Preview
[img]
Preview
Text (ABSTRAK)
2_abstrak-1.pdf

Download (65kB) | Preview
[img] Text (DAFTAR ISI)
3_daftarisi-1.pdf

Download (91kB)
[img]
Preview
Text (BAB I)
4_bab1.pdf

Download (318kB) | Preview
[img] Text (BAB II)
5_bab2.pdf
Restricted to Registered users only

Download (800kB) | Request a copy
[img] Text (BAB III)
6_bab3.pdf
Restricted to Registered users only

Download (212kB) | Request a copy
[img] Text (BAB IV)
7_bab4.pdf
Restricted to Registered users only

Download (4MB) | Request a copy
[img] Text (BAB V)
8_bab5.pdf
Restricted to Registered users only

Download (64kB) | Request a copy
[img] Text (DAFTAR PUSTAKA)
9_daftarpustaka.pdf
Restricted to Registered users only

Download (201kB) | Request a copy

Abstract

INDONESIA : Penelitian ini membahas tentang perbandingan solusi optimal masalah transportasi kasus minimasi seimbang (balanced) dan tak seimbang (unbalanced) dengan Metode Hanif-Rafi dan Metode Harmonic Mean Approach. Metode Hanif-Rafi dan Metode Harmonic Mean Approach merupakan salah satu metode optimalisasi masalah transportasi yang langsung menguji keoptimalan dari tabel transportasi tanpa harus menentukan solusi layak awal terlebih dahulu. Analisis perbandingan dengan empat contoh kasus dengan ukuran matriks yang bervariasi. Metode Hanif-Rafi memberikan solusi optimal sebesar 2170 satuan biaya pada ukuran matriks 6x6, 696 satuan biaya pada ukuran matriks 7x5, dan 145 satuan biaya pada ukuran matriks 6x8. Sedangkan Metode Harmonic Mean Approach memberikan solusi optimal sebesar 2570 satuan biaya pada ukuran matriks 6x6, 468 satuan biaya pada ukuran matriks 7x5, dan 93 satuan biaya pada ukuran matriks 6x8. Pada kedua metode ini terdapat hasil solusi optimal yang sama sebesar 460 satuan biaya pada ukuran matriks 3x4. Sehingga dapat disimpulkan bahwa penyelesaian solusi optimal masalah transportasi kasus minimasi seimbang (balanced) menggunakan Metode Hanif-Rafi lebih baik dan optimal dibandingkan Metode Harmonic Mean Approach, sedangkan pada kasus minimasi tak seimbang (unbalanced) menggunakan Metode Harmonic Mean Approach lebih baik dan optimal dibandingkan Metode Hanif-Rafi. ENGLISH : This study discusses the comparison of the optimal solution to the balanced and unbalanced transportation problem with the Hanif-Rafi Method and the Harmonic Mean Approach Method. The Hanif-Rafi method and the Harmonic Mean Approach method are methods of optimizing transportation problems that directly test the optimization of the transportation table without having to determine the solution first. Comparative analysis with four case examples with varying matrix sizes. The Hanif-Rafi method provides an optimal solution of 2170 cost units on a 6x6 matrix size, 696 cost units on a 7x5 matrix size, and 145 cost units on a 6x8 matrix size. While the Harmonic Mean Approach method provides an optimal solution of 2570 cost units on a 6x6 matrix size, 468 cost units on a 7x5 matrix size, and 93 cost units on a 6x8 matrix size. In both of these methods there is the same optimal solution result of 460 units costs on a 3x4 matrix size. So it can be said that the optimal solution to the transportation problem is a balanced (balanced) minimal problem using the Hanif-Rafi Method is better and optimal than the Harmonic Method, while in the minimal unbalanced (unbalanced) case using the Harmonic Method the approach is better and optimal.

Item Type: Thesis (Sarjana)
Uncontrolled Keywords: Masalah Transportasi; Solusi Optimal; Metode Hanif-Rafi; Metode Harmonic MEAN Approach;
Subjects: Mathematics > Data Processing and Analysis of Mathematics
Mathematics > Research Methods of Mathematics
Applied mathematics > Mathematical Optimization
Applied mathematics > Programming Mathematics
Divisions: Fakultas Sains dan Teknologi > Program Studi Matematika
Depositing User: Muhamad Agung Setiawan
Date Deposited: 09 Dec 2022 08:32
Last Modified: 09 Dec 2022 08:35
URI: https://digilib.uinsgd.ac.id/id/eprint/61592

Actions (login required)

View Item View Item