Saputra, Dadan Firmansyah (2023) Implementasi algoritma CNN dalam klasifikasi citra medis MRI penyakit alzheimer. Sarjana thesis, UIN Sunan Gunung Djati Bandung.
|
Text
1_cover.pdf Download (93kB) | Preview |
|
|
Text
2_abstrak.pdf Download (24kB) | Preview |
|
|
Text
Surat Pernyataan Karya Sendiri (14).pdf Download (1MB) | Preview |
|
|
Text
4_daftarisi.pdf Download (69kB) | Preview |
|
|
Text
5_bab1.pdf Download (259kB) | Preview |
|
![]() |
Text
6_bab2.pdf Restricted to Registered users only Download (202kB) | Request a copy |
|
![]() |
Text
7_bab3.pdf Restricted to Registered users only Download (481kB) | Request a copy |
|
![]() |
Text
8_bab4.pdf Restricted to Registered users only Download (1MB) | Request a copy |
|
![]() |
Text
9_bab5.pdf Restricted to Registered users only Download (103kB) | Request a copy |
|
![]() |
Text
10_daftarpustaka.pdf Restricted to Registered users only Download (160kB) | Request a copy |
|
![]() |
Text
Lampiran (95).pdf Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
Alzheimer's disease is a neurodegenerative condition that affects brain function, cognition and individual behavior, most commonly occurring in the elderly over 65 years. The importance of early diagnosis of Alzheimer's disease by analyzing brain MRI (Magnetic Resonance Imaging) medical images. One of the methods used for processing MRI medical images is the Convolutional Neural Network (CNN) algorithm. Therefore, research was conducted on how to apply the Convolutional Neural Network (CNN) algorithm to classify Magnetic Resonance Imaging (MRI) medical images of Alzheimer's disease and how well the algorithm performs utilizing Augmented Alzheimer MRI public dataset published by Sarvesh Dubey with format of images .JPG. Based on the research results, the Convolutional Neural Network (CNN) algorithm used to classify Alzheimer's disease is NonDemented, MildDemented, and ModerateDemented. Where, the application of the VGG-16 model to Alzheimer's MRI produces a high accuracy validation value with an image resolution of 64×64 pixels, the number of epochs is 70 using the adam optimizer which has a validation accuracy of 92%. Penyakit alzheimer merupakan kondisi neurodegeneratif yang mempengaruhi fungsi otak, kognisi, dan perilaku individu paling umum terjadi pada lansia di atas 65 tahun. Pentingnya diagnosis dini penyakit alzheimer dengan melakukan analisis citra medis MRI (Magnetic Resonance Imaging) otak. Salah satu metode yang digunakan untuk pengolahan citra medis MRI yakni algoritma Convolutional Neural Network (CNN). Maka dari itu, dilakukan penelitian bagaimana cara menerapkan algoritma CNN untuk klasifikasi citra medis MRI penyakit alzheimer dan sejauh mana kinerja algoritma tersebut dengan menggunakan public data Augmented Alzheimer MRI yang dipublikasikan oleh Sarvesh Dubey dengan tipe data gambar .JPG. Berdasarkan hasil penelitian, algoritma CNN yang digunakan untuk mengklasifikasikan penyakit alzheimer berupa NonDemented, MildDemented, dan ModerateDemented. Dimana, penerapan model VGG-16 pada MRI alzheimer menghasilkan nilai validation akurasi tinggi dengan resolusi gambar 64×64 pixel, jumlah epoch sebesar 70 dengan menggunakan optimizer adam yang memiliki validasi akurasi 92%.
Item Type: | Thesis (Sarjana) |
---|---|
Uncontrolled Keywords: | Penyakit alzheimer; MRI (Magnetic Resonance Imaging); Convolutional Neural Network (CNN); VGG-16; NonDemented; MildDemented; ModerateDemented |
Subjects: | Technology, Applied Sciences Medicine and Health > General Publications of Medical Science |
Divisions: | Fakultas Sains dan Teknologi > Program Studi Teknik Informatika |
Depositing User: | Dadan Firmansyah Saputra |
Date Deposited: | 23 Jul 2025 03:15 |
Last Modified: | 23 Jul 2025 03:15 |
URI: | https://digilib.uinsgd.ac.id/id/eprint/113164 |
Actions (login required)
![]() |
View Item |