Analisis perbandingan solusi optimal masalah penugasan tidak seimbang menggunakan Improved Ant Colony Optimization dan Algoritma Artificial Bee Colony

Indriana, Yoan Eka (2025) Analisis perbandingan solusi optimal masalah penugasan tidak seimbang menggunakan Improved Ant Colony Optimization dan Algoritma Artificial Bee Colony. Sarjana thesis, UIN Sunan Gunung Djati Bandung.

[img]
Preview
Text (COVER)
1_cover.pdf

Download (267kB) | Preview
[img]
Preview
Text (ABSTRAK)
2_abstrak.pdf

Download (288kB) | Preview
[img]
Preview
Text (LEMBAR PERNYATAAN)
3_skbebasplagiarism.pdf

Download (58kB) | Preview
[img]
Preview
Text (DAFTAR ISI)
4_daftarisi.pdf

Download (295kB) | Preview
[img]
Preview
Text (BAB I)
5_bab1.pdf

Download (340kB) | Preview
[img] Text (BAB II)
6_bab2.pdf
Restricted to Registered users only

Download (544kB) | Request a copy
[img] Text (BAB III)
7_bab3.pdf
Restricted to Registered users only

Download (589kB) | Request a copy
[img] Text (BAB IV)
8_bab4.pdf
Restricted to Registered users only

Download (549kB) | Request a copy
[img] Text (BAB V)
9_bab5.pdf
Restricted to Registered users only

Download (279kB) | Request a copy
[img] Text (DAFTAR PUSTAKA)
10_daftarpustaka.pdf
Restricted to Registered users only

Download (243kB) | Request a copy
[img] Text (LAMPIRAN)
11_lampiran.pdf
Restricted to Repository staff only

Download (838kB) | Request a copy

Abstract

INDONESIA: Penelitian ini membahas penyelesaian masalah penugasan tidak seimbang, dimana jumlah pekerja tidak sama dengan jumlah tugas. Dua algoritma metaheuristik digunakan dalam penelitian ini adalah Improved Ant Colony Optimization (IACO) dan Algoritma Artificial Bee Colony (ABC). Penelitian ini bertujuan untuk membandingkan solusi optimal yang dihasilkan oleh kedua algoritma dalam menyelesaikan masalah penugasan tidak seimbang berdasarkan kriteria minimasi biaya dan waktu. Data yang digunakan diperoleh dari divisi produksi roti di PT. Griya Pratama (Yomart), yang terdiri atas tiga jenis tugas: shaping, baking, dan packing. Simulasi dilakukan pada tiga kasus penugasan dengan ukuran data yang berbeda. Hasil penelitian menunjukkan bahwa IACO secara konsisten menghasilkan solusi yang lebih optimal dibandingkan algoritma ABC dalam semua kasus. Pada kasus 1, didapat hasil dari IACO saat mempertimbangkan biaya 28810 (ribuan rupiah) dan saat mempertimbangkan waktu 67 (jam). Pada kasus 2, saat mempertimbangkan biaya 11350 (ribuan rupiah) dan saat mempertimbangkan waktu 68 (jam). Sedangkan pada kasus 3, saat mempertimbangkan biaya 7010 (ribuan rupiah) dan saat mempertimbangkan waktu 263 (jam). Dengan hasil tersebut, dapat disimpulkan bahwa IACO terbukti lebih efisien dan stabil dalam menghasilkan solusi optimal, baik dalam aspek biaya maupun waktu, serta lebih adaptif terhadap perubahan parameter. Dengan demikian, IACO direkomendasikan sebagai metode yang lebih unggul dalam menyelesaikan masalah penugasan tidak seimbang, terutama pada data berskala besar dan kompleks. ENGLISH: This study discusses the solution to the unbalanced assignment problem, where the number of workers is not equal to the number of tasks. Two metaheuristic algorithms are used in this research: Improved Ant Colony Optimization (IACO) and the Artificial Bee Colony (ABC) algorithm. The purpose of this study is to compare the optimal solutions generated by both algorithms in solving unbalanced assignment problems based on the criteria of minimizing cost and time. The data used were obtained from the bread production division of PT. Griya Pratama (Yomart), which involves three types of tasks: shaping, baking, and packing. Simulations were conducted on three assignment cases with different data sizes. The results show that IACO consistently produces more optimal solutions than the ABC algorithm in all cases. In case 1, IACO produced a cost of 28,810 (thousand rupiah) and a time of 67 (hours). In case 2, the cost was 11,350 (thousand rupiah) and the time was 68 (hours). In case 3, the cost was 7,010 (thousand rupiah) and the time was 263 (hours). These results indicate that IACO is more efficient and stable in producing optimal solutions, both in terms of cost and time, and is more adaptive to parameter changes. Therefore, IACO is recommended as a superior method for solving unbalanced assignment problems, especially for large-scale and complex datasets.

Item Type: Thesis (Sarjana)
Uncontrolled Keywords: Masalah penugasan tidak seimbang; optimasi; Improved Ant Colony Optimization (IACO); Artificial Bee Colony (ABC); metaheuristik
Subjects: Mathematics > Data Processing and Analysis of Mathematics
Applied mathematics > Mathematical Optimization
Applied mathematics > Special Topics of Applied Mathematics
Divisions: Fakultas Sains dan Teknologi > Program Studi Matematika
Depositing User: Yoan Eka Indriana
Date Deposited: 25 Aug 2025 04:06
Last Modified: 25 Aug 2025 04:06
URI: https://digilib.uinsgd.ac.id/id/eprint/115906

Actions (login required)

View Item View Item