Penyelesaian masalah transportasi dua kriteria Fuzzy menggunakan algoritma revisi Keshavarz-Khorram

Aisyah, Siti (2018) Penyelesaian masalah transportasi dua kriteria Fuzzy menggunakan algoritma revisi Keshavarz-Khorram. Diploma thesis, UIN Sunan Gunung Djati Bandung.

[img]
Preview
Text (COVER)
1_ cover.pdf

Download (130kB) | Preview
[img]
Preview
Text (ABSTRAK)
2_ abstrak.pdf

Download (221kB) | Preview
[img]
Preview
Text (DAFTAR ISI)
3_daftarisi.pdf

Download (308kB) | Preview
[img]
Preview
Text (BAB I)
4_bab1.pdf

Download (530kB) | Preview
[img] Text (BAB II)
5_bab2.pdf
Restricted to Registered users only

Download (536kB) | Request a copy
[img] Text (BAB III)
6_bab3.pdf
Restricted to Registered users only

Download (721kB) | Request a copy
[img] Text (BAB IV)
7_bab4.pdf
Restricted to Registered users only

Download (2MB) | Request a copy
[img] Text (BAB V)
8_bab5.pdf
Restricted to Registered users only

Download (323kB) | Request a copy
[img] Text (DAFTAR PUSTAKA)
9_daftarpustaka.pdf
Restricted to Registered users only

Download (240kB) | Request a copy

Abstract

Penyelesaian masalah transportasi dua kriteria dengan waktu pengiriman fuzzy dan keuntungan transportasi fuzzy. Menerapkan kriteria max-min Bellman dan Zadeh dalam merumuskan masalah transportasi dua kriteria fuzzy. Kriteria Bellman dan Zadeh menunjukkan masalahnya dapat disederhanakan menjadi masalah pemrograman bilevel. Keshavarz dan Khorram menyarankan suatu algoritma berdasarkan pemrograman linier parametrik untuk menyelesaikan masalah pemrograman bilevel. Algoritma tersebut menyelesaikan masalah transportasi dua kriteria fuzzy yang disederhanakan menjadi dua masalah pemrograman bilevel. Langkah terakhir algoritma ini menunjukkan nilai maksimum dari dua solusi optimal merupakan nilai optimal untuk masalah transportasi dua kriteria fuzzy namun merupakan batas bawah. Untuk mengatasi kekurangan ini dirancang suatu algoritma revisi. Algoritma revisi ini mencari nilai optimal dengan pendekatan bisection iterative dan menerapkan kriteria penghentian untuk menghentikan algoritma. Contoh kasus disediakan untuk menjelaskan penerapan algoritma revisi. Solusi optimal dari contoh kasus masalah transportasi dua kriteria fuzzy yaitu 0.5304878049. Diperoleh total waktu pengiriman minimum sebesar 559.74359024482 dan total keuntungan maksimum adalah 514.2378048721. solving a fuzzy bicriteria transportation problem with fuzzy delivery time and fuzzy profit of transportation. Need to choose Bellman-Zadeh's criterion in formulating a fuzzy bicriteria transportation problem. The Bellman-Zadeh criterion show the problem can be simplified into a bilevel programming problem. Keshavarz-Khorram's proposed an algorithma based on the parametric linear prigramming for solving a bilevel programming problem. the algorithm resolves the transportation problem of two fuzzy criteria wich is simplified into two bilevel programming problem. The final step of this algorithm shows the maximum value of two optimal solution is as the optimal value of the transportation problem two fuzzy criteria and lower bound. To address this shortcoming, a revised algorithm is designed. In this algorithm, for searching the optimal value with an itterative bisection search approach and some stopping criteria can be utilized to stop the algorithm. The case example are provided to explain the application of the revised algorithm. The result of the case of the transportation problem of these bicriteria fuzzy is 0.5304878049. Obtained a minimum total delivery time is 559.74359024482 and the maximum total profit is 514.2378048721.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Interval Fuzzy; Fungsi Keanggotaan; Masalah Transportasi Dua Kriteria; Pemrograman Bilevel; Algoritma Revisi KeshavarzKhorram;
Subjects: Applied mathematics > Mathematical Optimization
Divisions: Fakultas Sains dan Teknologi > Program Studi Matematika
Depositing User: Siti Aisyah
Date Deposited: 03 Dec 2018 08:37
Last Modified: 03 Dec 2018 08:37
URI: https://digilib.uinsgd.ac.id/id/eprint/17122

Actions (login required)

View Item View Item