Nilai total ketakteraturan wajah dari Graf Berlian (〖Br〗_n)

Nurfitriyani, Witri (2021) Nilai total ketakteraturan wajah dari Graf Berlian (〖Br〗_n). Diploma thesis, UIN Sunan Gunung Djati Bandung.

[img]
Preview
Text (COVER)
1_cover.pdf

Download (371kB) | Preview
[img]
Preview
Text (ABSTRAK)
2_abstrak.pdf

Download (337kB) | Preview
[img]
Preview
Text (DAFTAR ISI)
3_daftarisi.pdf

Download (323kB) | Preview
[img]
Preview
Text (BAB I)
4_bab1.pdf

Download (556kB) | Preview
[img] Text (BAB II)
5_bab2.pdf
Restricted to Registered users only

Download (831kB) | Request a copy
[img] Text (BAB III)
6_bab3.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[img] Text (BAB IV)
7_bab4.pdf
Restricted to Registered users only

Download (318kB) | Request a copy
[img] Text (DAFTAR PUSAKA)
8_daftarpustaka.pdf
Restricted to Registered users only

Download (431kB) | Request a copy

Abstract

INDONESIA : Pada tahun 2016, Muthu Guru Packiam memperkenalkan pelabelan-k total tak teratur wajah dari graf bidang terhubung G. Suatu pelabelan total λ∶V∪E ⟶{1,2,…,k} ┤ dari graf bidang terhubung G=(V,E,F) dinamakan pelabelan-k total tak teratur wajah, jika untuk setiap dua wajah yang berbeda f dan g maka bobot wajah keduanya w_λ (f) dan w_λ (g) berbeda. Bobot wajah f dengan pelabelan λ adalah jumlah label dari semua titik dan sisi di sekitar wajah f. Nilai k terkecil sehingga graf bidang G memiliki pelabelan-k total tak teratur wajah disebut nilai total ketakteraturan wajah yang dinotasikan dengan tfs(G). Pada skripsi ini, ditentukan nilai total ketakteraturan wajah dari graf berlian (〖Br〗_n) dan akan membuktikan bahwa tfs (〖Br〗_n )= ⌈(3n+1)/6⌉, untuk n≥3 ENGLISH : In 2016 Muthu Guru Packiam introduced a face irregular total labeling of connected graf G. A total k-labeling λ∶V∪E ⟶{1,2,…,k} ┤ of a connected plane graph G=(V,E,F) is called an face irregular total k-labeling if for any two different faces f and g their weight w_λ (f) and w_λ (g) are distinct. The weight of a face f under labeling λ is the sum of the labels of all vertices and the edges surrounding f. The minimum k for which a plane graph G has a face irregular total k-labeling is called total face irregularity strength of G and it is denoted by tfs(G). In this paper, we discuss the total face irregularity strength of diamond graphs (〖Br〗_n) and prove that tfs (〖Br〗_n )= ⌈(3n+1)/6⌉, for n≥3

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Pelabelan total tak teratur wajah; Nilai total ketakteraturan wajah; graf berlian;face irregular total; total face irreguarity strength; diamond graph.
Subjects: Mathematics
Divisions: Fakultas Sains dan Teknologi > Program Studi Matematika
Depositing User: Witri Nurfitriyani
Date Deposited: 23 Feb 2021 04:34
Last Modified: 23 Feb 2021 04:34
URI: https://digilib.uinsgd.ac.id/id/eprint/37235

Actions (login required)

View Item View Item