Aprilialdy, Fadjri (2021) Rancang bangun sistem monitoring tekanan darah berbasis Internet of Things. Sarjana thesis, Universitas Islam Negeri Sunan Gunung Djati Bandung.
|
Text (COVER)
1_cover.pdf Download (262kB) | Preview |
|
|
Text (ABSTRAK)
2_abstrak.pdf Download (138kB) | Preview |
|
|
Text (DAFTAR ISI)
3_daftarisi.pdf Download (250kB) | Preview |
|
|
Text (BAB I)
4_bab1.pdf Download (577kB) | Preview |
|
Text (BAB II)
5_bab2.pdf Restricted to Registered users only Download (913kB) | Request a copy |
||
Text (BAB III)
6_bab3.pdf Restricted to Registered users only Download (315kB) | Request a copy |
||
Text (BAB IV)
7_bab4.pdf Restricted to Registered users only Download (1MB) | Request a copy |
||
Text (BAB V)
8_bab5.pdf Restricted to Registered users only Download (746kB) | Request a copy |
||
Text (BAB VI)
9_bab6.pdf Restricted to Registered users only Download (222kB) | Request a copy |
||
Text (DAFTAR PUSTAKA)
10_daftarpustaka.pdf Restricted to Registered users only Download (377kB) | Request a copy |
Abstract
Tekanan darah adalah salah satu parameter fisik yang sering diukur dan indikator penting dari kondisi kesehatan. Tekanan darah tidak normal dapat menyebabkan kematian, hal ini dapat terjadi karena beberapa faktor salah satunya yaitu tidak dilakukannya pengecekan tekanan darah secara berkala, sehingga seseorang tidak mengetahui kondisi tekanan darah pada dirinya. Maka dari itu, pada penelitian ini dirancang sebuah alat sistem monitoring tekanan darah berbasis internet of things, selain dapat mengukur tekanan darah secara digital dan pembacaan hasil pengukuran nya praktis, kondisi pengguna juga dapat melihat hasil monitoring selama 24 jam secara langsung melaui database berbentuk spreadsheet yang bisa diakses kapanpun. Hardware yang digunakan dalam melakukan pembuatan alat ini yaitu, sensor MPX5700AP, ESP32, motor pompa udara DC, solenoid valve, LCD I2C, modul relay, LM2596 DC-DC, baterai 18650 dan manset tekanan darah, sedangkan software yang digunakan yaitu arduino IDE, aplikasi blynk dan spreadsheet excel. Hasil monitoring tekanan darah dengan kondisi tubuh setelah berolahraga didapat nilai error sistolik sebesar 1,71% dan nilai error diastolik sebesar 1,72%, serta menghasilkan nilai tingkat keakuratan alat pada nilai sistolik sebesar 98,288% dan nilai tingkat keakuratan alat pada nilai diastolik sebesar 98,285%. Sedangkan pada percobaan pengujian monitoring tekanan darah dengan kondisi tubuh keadaan normal didapat nilai error pada sistolik sebesar 2,72% dan nilai error diastolik sebesar 3,3%, serta menghasilkan nilai tingkat keakuratan alat pada nilai sistolik sebesar 97,05% dan nilai tingkat keakuratan alat pada nilai diastolik sebesar 96,71%. Secara keseluruhan alat dapat bekerja sesuai yang di harapkan, alat yang di buat dapat memberikan respon sesuai dengan apa yang sudah di konsepkan. Blood pressure is a physical parameter that is often measured and an important indicator of health conditions. Abnormal blood pressure can cause death, this can happen due to several factors, one of which is not checking blood pressure regularly, so that a person does not know the condition of his blood pressure. Therefore, in this study, a blood pressure monitoring system tool based on the internet of things was designed, in addition to being able to measure blood pressure digitally and reading the measurement results practically, the user’s condition can also see the monitoring results for 24 hours directly through a spreadsheet-shaped database that can be accessed at any time. The hardware used in making this tool is MPX5700AP sensor, ESP32, DC air pump motor, solenoid valve, LCD I2C, relay module, LM2596 DC-DC, 18650 battery and blood pressure cuff, while the software used is Arduino IDE, application blynk and excel spreadsheets. The results of monitoring blood pressure with the condition of the body after exercise obtained a systolic error value of 1.71% and a diastolic error value of 1.72%, and resulted in the value of the accuracy of the device at the systolic value of 98.288% and the value of the accuracy of the instrument at the diastolic value of 98.285%. Meanwhile, in the blood pressure monitoring test experiment with normal body conditions, the systolic error value was 2.72% and the diastolic error value was 3.3%, and resulted in the accuracy of the instrument at the systolic value of 97.05% and the accuracy level value. instrument on the diastolic value of 96.71%. Overall the tool can work as expected, the tool that is made can provide a response according to what has been conceptualized.
Item Type: | Thesis (Sarjana) |
---|---|
Uncontrolled Keywords: | Tekanan darah; Monitoring; Database; Internet of things |
Subjects: | Data Processing, Computer Science Data Processing, Computer Science > Systems Analysis and Computer Design Applied Physics > Electrical Engineering |
Divisions: | Fakultas Sains dan Teknologi > Program Studi Teknik Elektro |
Depositing User: | Fadjri Aprilialdy |
Date Deposited: | 20 Jan 2022 07:49 |
Last Modified: | 20 Jan 2022 07:49 |
URI: | https://digilib.uinsgd.ac.id/id/eprint/48174 |
Actions (login required)
View Item |