Hasanah, Revani Nur (2023) Penyelesaian Vehicle Routing Problem With Time Windows (VRPTW) menggunakan Algoritma Genetika yang dimodifikasi. Sarjana thesis, UIN Sunan Gunung Djati Bandung.
|
Text (COVER)
1_cover.pdf Download (105kB) | Preview |
|
|
Text (ABSTRAK)
2_abstrak.pdf Download (64kB) | Preview |
|
|
Text (DAFTAR ISI)
3_daftarisi.pdf Download (94kB) | Preview |
|
|
Text (BAB I)
4_bab1.pdf Download (202kB) | Preview |
|
Text (BAB II)
5_bab2.pdf Restricted to Registered users only Download (398kB) | Request a copy |
||
Text (BAB III)
6_bab3.pdf Restricted to Registered users only Download (280kB) | Request a copy |
||
Text (BAB IV)
7_bab4.pdf Restricted to Registered users only Download (646kB) | Request a copy |
||
Text (BAB V)
8_bab5.pdf Restricted to Registered users only Download (62kB) | Request a copy |
||
Text (DAFTAR PUSTAKA)
9_daftarpustaka.pdf Restricted to Registered users only Download (198kB) | Request a copy |
Abstract
INDONESIA : Vehicle Routing Problem with Time Windows (VRPTW) merupakan masalah optimasi penentuan rute optimal kendaraan yang mendistribusikan barang/ jasa, setiap kendaraan berangkat dan kembali lagi ke titik awal pemberangkatan (depot). VRPTW merupakan perkembangan dari VRP yang memiliki kendala kapasitas angkut kendaraan dan time windows. Salah satu metode optimasi yang bisa dugunakan yaitu Algoritma Genetika. Seiring dengan perkembangan zaman Algoritma Genetika bisa dimodifikasi dengan Algoritma PSO untuk menyelesaikan VRPTW pada benchmark Solomon. Data Solomon digunakan sebagai tolak ukur hasil solusi optimal pada penelitian ini dengan menggunakan 3 dataset uji yaitu C (Cluster), R (Random), dan RC (Random Cluster) tiap dataset tersebut menggunakan 5 tipe data yaitu C101, C102, C103, C104, C104, C105, R101, R102, R103, R104, R105, RC101, RC102, RC103, RC104, RC105 dengan jumlah pelanggan 25, 50, 100, dan 1000 pelanggan. Metode AG modifikasi untuk pelanggan 25, 50, 100, dan 1000 menghasilkan rata-rata RPD sebesar 12%, 30%, 47%, dan 572%. Sedangkan AG dasar untuk pelanggan 25, 50, 100, dan 1000 menghasilkan rata-rata RPD sebesar 24%, 40%, 52%, dan 433%. Hasil dari penelitian ini menunjukkan bahwa AG yang dimodifikasi memberikan solusi yang mendekati optimal untuk tipe data kecil yaitu 25, 50, 100 pelanggan, sedangkan untuk data yang besar yaitu 1000 pelanggan AG dasar memperoleh hasil yang lebih baik mendekati solusi optimal dibandingkan AG yang dimodifikasi. ENGLISH : Vehicle Routing Problem with Time Windows (VRPTW) is an optimization problem of determining the optimal route of vehicles that distribute goods/ services, each vehicle departs and returns to the starting point of departure (depot). VRPTW is a development of VRP that has vehicle carrying capacity constraints and time windows. One of the optimization methods that can be used is the Genetic Algorithm. Along with the times the Genetic Algorithm can be modified with the PSO Algorithm to solve VRPTW on the Solomon benchmark. Solomon data is used as a benchmark for optimal solution results in this study using 3 test datasets namely C (Cluster), R (Random), and RC (Random Cluster) each dataset uses 5 data types namely C101, C102, C103, C104, C105, R101, R102, R103, R104, R105, RC101, RC102, RC103, RC104, RC105 with the number of customers 25, 50, 100, and 1000 customers. The modified AG method for customers 25, 50, 100, and 1000 resulted in an average RPD of 12%, 30%, 47%, and 572%. While the basic AG for customers 25, 50, 100, and 1000 produces an average RPD of 24%, 40%, 52%, and 433%. The results of this study show that the modified AG provides a solution that is close to optimal for small data types 25, 50, 100 customers, while for large data 1000 customers, the basic AG gets better results closer to the optimal solution than the modified AG. Keywords : Genetic Algorithm, Vehicle Routing Problem, Vehicle Routing Problem with Time Windows, Relative Percentage Deviation.
Item Type: | Thesis (Sarjana) |
---|---|
Uncontrolled Keywords: | Genetic Algorithm; Vehicle Routing Problem; Vehicle Routing Problem with Time Windows; Relative Percentage Deviation. |
Subjects: | Applied mathematics > Mathematical Optimization |
Divisions: | Fakultas Sains dan Teknologi > Program Studi Matematika |
Depositing User: | Revani Revani Hasanah |
Date Deposited: | 08 Sep 2023 05:42 |
Last Modified: | 08 Sep 2023 05:42 |
URI: | https://digilib.uinsgd.ac.id/id/eprint/76082 |
Actions (login required)
View Item |