Ulya, Tasya Nailal (2023) Pelabelan tak teratur dan tak teratur modular pada graf hasil kali comb antara graf lintasan P_2 dengan graf lingkaran C_n. Sarjana thesis, UIN Sunan Gunung Djati Bandung.
|
Text (COVER)
1_cover.pdf Download (194kB) | Preview |
|
|
Text (ABSTRAK)
2_abstrak.pdf Download (267kB) | Preview |
|
|
Text (DAFTAR ISI)
3_daftarisi.pdf Download (197kB) | Preview |
|
|
Text (BAB I)
4_bab1.pdf Download (260kB) | Preview |
|
Text (BAB II)
5_bab2.pdf Restricted to Registered users only Download (659kB) | Request a copy |
||
Text (BAB III)
6_bab3.pdf Restricted to Registered users only Download (697kB) | Request a copy |
||
Text (BAB IV)
7_bab4.pdf Restricted to Registered users only Download (179kB) | Request a copy |
||
Text (DAFTAR PUSTAKA)
8_daftarpustaka.pdf Restricted to Registered users only Download (185kB) | Request a copy |
Abstract
INDONESIA : Pelabelan pada suatu graf adalah sebarang pemetaan atau fungsi yang memasangkan unsur-unsur graf ke suatu bilangan. Suatu pelabelan sisi ψ:E(G)→{1,2,…,k} disebut pelabelan-k tak teratur di G jika bobot setiap titik berbeda, dimana bobot titik x merupakan penjumlahan dari label sisi-sisi yang terkait dengan titik x. Nilai k terkecil sehinga G memiliki pelabelan-k tak teratur disebut nilai ketakteraturan dari graf G dan dinotasikan dengan s(G). Pelabelan tak teratur modular didefinisikan sebagai suatu pelabelan-k tak teratur dimana terdapat fungsi bobot bijeksi dari bobot setiap titik ke himpunan bilangan bulat modulo n, dimana n adalah banyaknya titik dari graf tersebut. Graf memiliki berbagai macam bentuk diantaranya graf lintasan dan graf lingkaran, serta terdapat operasi pada sebuah graf diantaranya operasi comb. Pada penelitian ini, ditentukan konstruksi pelabelan tak teratur dan tak teratur modular pada graf hasil kali comb antara graf lintasan P_2 dengan graf lingkaran C_n dan dinotasikan P_2⊳C_n, serta ditentukan nilai ketakteraturan dan nilai ketakteraturan modular dari graf P_2⊳C_n. ENGLISH : Labeling in a graph is any mapping or function that associates elements of the graph with a number. A labeling of the edges ψ:E(G)→{1,2,…,k} is called a k-irregular labeling in G if the weights of each vertex are distinct, where the weight of vertex x is the sum of the labels of the edges associated with vertex x. The smallest value of k such that G has a k-irregular labeling is called the irregularity strength of graph G and is denoted as s(G). Modular irregular labeling is defined as a k-irregular labeling where there exists a bijection weight function from the weights of each vertex to the set of integers modulo n, where n is the number of vertices in the graph. Graphs come in various forms, including path graphs and cycle graphs, and there are operations on a graph, including the comb operation. In this research, the construction of irregular and modular irregular labelings is determined for the graph resulting from the comb product of a path graph P_2 and a cycle graph C_n, denoted as P_2⊳C_n, and the irregularity strength and modular irregularity strength of the graph P_2⊳C_n are determined.
Item Type: | Thesis (Sarjana) |
---|---|
Uncontrolled Keywords: | graf lintasan;graf lingkaran;nilai ketakteratura;nilai ketakteraturan modular;operasi comb;pelabelan tak teratur;pelabelan tak teratur modular. |
Subjects: | Algebra Algebra > Algebra Combined with Other Brances Algebra > Groups and Groups Theory Algebra > Foundations of Algebra Applied mathematics > Special Topics of Applied Mathematics |
Divisions: | Fakultas Sains dan Teknologi > Program Studi Matematika |
Depositing User: | Tasya Nailal Ulya |
Date Deposited: | 18 Sep 2023 09:38 |
Last Modified: | 18 Sep 2023 09:38 |
URI: | https://digilib.uinsgd.ac.id/id/eprint/77820 |
Actions (login required)
View Item |